

 Introduction to RDBMS / 1

CHAPTER 1

INTRODUCTION TO RDBMS

 1.0 Objectives
 1.1 Introduction
 1.2 What is RDBMS ?
 1.3 Difference between DBMS & RDBMS
 1.4 Summary
 1.5 Check your Progress – Answers
 1.6 Questions for Self – Study
 1.7 Suggested Readings

1.0 OBJECTIVES

After reading this chapter you will be able to,

 Describe what RDBMS is

 State the difference between DBMS & RDBMS

1.1 INTRODUCTION

Most of the problems faced at the time of implementation of any system are
outcome of a poor database design. In many cases it happens that system has to
be continuously modified in multiple respects due to changing requirements of
users. It is very important that a proper planning has to be done.
A relation in a relational database is based on a relational schema, which consists
of number of attributes.
A relational database is made up of a number of relations and corresponding
relational database schema.
The goal of a relational database design is to generate a set of relation schema
that allows us to store information without unnecessary redundancy and also to
retrieve information easily.
One approach to design schemas that are in an appropriate normal form. The
normal forms are used to ensure that various types of anomalies and
inconsistencies are not introduced into the database.

1.2 WHAT IS RDBMS?

RDBMS stands for Relational Database Management System. RDBMS data is
structured in database tables, fields and records. Each RDBMS table consists of
database table rows. Each database table row consists of one or more database table
fields.
RDBMS store the data into collection of tables, which might be related by common
fields (database table columns). RDBMS also provide relational operators to
manipulate the data stored into the database tables. Most RDBMS use SQL as
database querylanguage.
The most popular RDBMS are MS SQL Server, DB2, Oracle and MySQL.
The relational model is an example of record-based model. Record based models are
so named because the database is structured in fixed format records of several types.
Each table contains records of a particular type. Each record type defines a fixed
number of fields, or attributes. The columns of the table correspond to the attributes of
the record types. The relational data model is the most widely used data model, and a
vast majority of current database systems are based on the relational model.
The relational model was designed by the IBM research scientist and mathematician,
Dr. E.F.Codd. Many modern DBMS do not conform to the Codd’s definition of a
RDBMS, but nonetheless they are still considered to be RDBMS.
 Two of Dr.Codd’s main focal points when designing the relational model were to
further reduce data redundancy and to improve data integrity within database systems.

 Oracle / 2

The relational model originated from a paper authored by Dr.codd entitled “A
Relational Model of Data for Large Shared Data Banks”, written in 1970. This paper
included the following concepts that apply to database management systems for
relational databases.
The relation is the only data structure used in the relational data model to represent
both entities and relationships between them.
Rows of the relation are referred to as tuples of the relation and columns are its
attributes. Each attribute of the column are drawn from the set of values known as
domain. The domain of an attribute contains the set of values that the attribute may
assume.
From the historical perspective, the relational data model is relatively new .The first
database systems were based on either network or hierarchical models .The relational
data model has established itself as the primary data model for commercial data
processing applications. Its success in this domain has led to its applications outside
data processing in systems for computer aided design and other environments.

 1.3 DIFFERENCE BETWEEN DBMS & RDBMS

A DBMS has to be persistent, that is it should be accessible when the program
created the data ceases to exist or even the application that created the data restarted.
A DBMS also has to provide some uniform methods independent of a specific
application for accessing the information that is stored.
RDBMS is a Relational Data Base Management System Relational DBMS. This adds
the additional condition that the system supports a tabular structure for the data, with
enforced relationships between the tables. This excludes the databases that don't
support a tabular structure or don't enforce relationships between tables.
You can say DBMS does not impose any constraints or security with regard to data
manipulation it is user or the programmer responsibility to ensure the ACID
PROPERTY of the database whereas the RDBMS is more with this regard because
RDBMS define the integrity constraint for the purpose of holding ACID PROPERTY.

1.1,1.2, and 1.3 Check your progress

 Fill in the blanks
1) A relation in a relational database is based on a relational schema, which consists

of number of ………………… .

2) …………………is a Relational Data Base Management System.

3) Rows of the relation are referred to as ………………… of the relation
4) The relational model was designed by the IBM research scientist and

mathematician, Dr. ………………….

5) The ………………… is the only data structure used in the relational data model to
represent both entities and relationships between them.

 State true or false
1) The normal forms never removes anomalies.
2) Each attribute of the column are drawn from the set of values known as domain.
3) The first database systems were based on either network or hierarchical models .
4) Most RDBMS use SQL as database query language.
5) Relational database design makes data retrieval difficult.

1.4 SUMMARY

The goal of a relational database design is to generate a set of relation schema that
allows us to store information without unnecessary redundancy and also to retrieve
information easily.
A database system is an integrated collection of related files, along with details of
interpretation of the data contained therein. DBMS is a s/w system that allows access
to data contained in a database. The objective of the DBMS is to provide a convenient
and effective method of defining, storing and retrieving the information contained in the
database.

 Introduction to RDBMS / 3

The DBMS interfaces with application programs so that the data contained in the
database can be used by multiple applications and users. The DBMS allows these
users to access and manipulate the data contained in the database in a convenient
and effective manner. In addition the DBMS exerts centralized control of the database,
prevents unauthorized users from accessing the data and ensures privacy of data.

1.5 CHECK YOUR PROGRESS - ANSWERS

 1.1, 1.2 & 1.3
Fill in the blanks
 1) attributes
 2) RDBMS

 3) tuples
 4) E.F.Codd
 5) relation

 True or false
 1) False

 2) True
 3) True
 4) True
 5) False

1.6 QUESTIONS FOR SELF - STUDY

1) Explain the following terms
i) Domain ii) Tuple iii) Relation iv) Attribute

 2) Explain difference between DBMS and RDBMS.
 3) Why relational data model is so popular ?
 4) What are record based models ?
 5) How RDBMS stores its data ?

1.7 SUGGESTED READINGS

 Teach Yourself SQL in 21 Days - By Ryan K. Stephens Ronald R Plew

 Using Oracle Application - By Jim Crum

 Oracle / 4

NOTES

Data Manipulation & Control / 5

CHAPTER 2

DATA MANIPULATION & CONTROL

 2.0 Objectives

 2.1 Introduction

 2.2 Subdivisions of SQL

 2.3 Data Definition Language

 2.4 Data Manipulation Language Commands

 2.5 Data Control Language

 2.6 Select Query and Clauses

 2.7 Select Statement with Order by Clause

 2.8 Group by Clause

 2.9 Having Clause

 2.10 String Operation

 2.11 Distinct Rows

 2.12 Rename Operation

 2.13 Set Operations

 2.14 Aggregate Functions

 2.15 Nested Sub Queries

 2.16 Embedded SQL

 2.17 Dynamic SQL

 2.18 Summary

 2.19 Check Your Progress - Answers

 2.20 Questions for Self – Study

 2.21 Suggested Readings

2.0 OBJECTIVES

 After reading this chapter you will able to

state SQL, DDL, DML, DCL Statements

explain Select,group by & having clause

explain String & set operations

describe Aggregate Functions
 describe Nested Sub Queries

describe Embedded & Dynamic SQL

2.1 INTRODUCTION

 In this chapter we study the query language : Structured Query Language (SQL)
which uses a combination of Relational algebra and Relational calculus.

 It is a data sub language used to organize, manage and retrieve data from
relational database, which is managed by Relational Database Management System
(RDBMS).

 Vendors of DBMS like Oracle, IBM, DB2, Sybase, and Ingress use SQL as
programming language for their database.

 SQL originated with the system R project in 1974 at IBM's San Jose Research
Centre.

 Original version of SQL was SEQUEL which was an Application Program Interface
(API) to the system R project.

 Oracle / 6

 The predecessor of SEQUEL was named SQUARE.

 SQL-92 is the current standard and is the current version.

 The SQL language can be used in two ways :

 Interactively or

 Embedded inside another program.

 The SQL is used interactively to directly operate a database and produce the
desired results. The user enters SQL command that is immediately executed. Most
databases have a tool that allows interactive execution of the SQL language. These
include SQL Base's SQL Talk, Oracle's SQL Plus, and Microsoft's SQL server 7 Query
Analyzer.

 The second way to execute a SQL command is by embedding it in another
language such as Cobol, Pascal, BASIC, C, Visual Basic, Java, etc. The result of
embedded SQL command is passed to the variables in the host program, which in turn
will deal with them. The combination of SQL with a fourth-generation language brings
together the best of two worlds and allows creation of user interfaces and database
access in one application.

2.2 SUBDIVISIONS OF SQL

 Regardless of whether SQL is embedded or used interactively, it can be divided
into three groups of commands, depending on their purpose.

 • Data Definition Language (DDL).

 • Data Manipulation Language (DML).

 • Data Control Language (DCL).

Data Definition Language :

 Data Definition Language is a part of SQL that is responsible for the creation,
updation and deletion of tables. It is responsible for creation of views and indexes also.
The list of DDL commands is given below :

 CREATE TABLE

 ALTER TABLE

 DROP TABLE

 CREATE VIEW

 CREATE INDEX

Data Manipulation Language :

 Data manipulation commands manipulate (insert, delete, update and retrieve)
data. The DML language includes commands that run queries and changes in data. It
includes the following commands :

 SELECT
 UPDATE
 DELETE

 INSERT

Data Control Language :

 The commands that form data control language are related to the security of the
database performing tasks of assigning privileges so users can access certain objects
in the database.
 The DCL commands are :

 GRANT
 REVOKE
 COMMIT

 ROLLBACK

Data Manipulation & Control / 7

2.3 DATA DEFINITION LANGUAGE

 The SQL DDL provides commands for defining relation schemas, deleting
relations, creating indices, and modifying relation schemas.
 The SQL DDL allows the specification of not only a set of relations but also
information about each relation including :
 • The schema for each relation.
 • The domain of values associated with each attribute.

 • The integrity constraints.
 • The set of indices to be maintained for each relation.
 • The security and authorization information for each relation.

 • The physical storage structure of each relation on disk.
Domain/Data Types in SQL :

 The SQL - 92 standard supports a variety of built-in domain types, including the
following :

 (1) Numeric data types include
 • Integer numbers of various sizes
 INT or INTEGER

 SMALLINT
 • Real numbers of various precision
 REAL

 DOUBLE PRECISION
 FLOAT (n)
 • Formatted numbers can be represented by using

 DECIMAL (i, j) or
 DEC (i, j)
 NUMERIC (i, j) or NUMBER (i, j)

 where, i - the precision, is the total number of decimal digits
 and j - the scale, is the number of digits after the decimal point.

 The default for scale is zero and the default for precision is implementation
defined.

(2) Character string data types - are either fixed - length or varying - length.
 CHAR (n) or CHARACTER (n) - is fixed length character string with user

specified length n.

 VARCHAR (n) - is a variable length character string, with user - specified
maximum length n. The full form of CHARACTER VARYING (n), is
equivalent.

(3) Date and Time data types :

 There are new data types for date and time in SQL-92.
DATE - It is a calendar date containing year, month and day typically in

the form
yyyy : mm : dd

TIME - It is the time of day, in hours, minutes and seconds, typically in the
form
HH : MM : SS.

 Varying length character strings, date and time were not part of the SQL -
89 standard.

 In this section we will study the three Data Definition Language Commands :
 CREATE TABLE

 ALTER TABLE
 DROP TABLE
1. CREATE TABLE Command :

 The CREATE TABLE COMMAND is used to specify a new relation by giving it a
name and specifying its attributes and constraints.

 Oracle / 8

 The attributes are specified first, and each attribute is given a name, a data type to
specify its domain of values and any attribute constraints such as NOT NULL. The key,
entity integrity and referential integrity constraints can be specified within the CREATE
TABLE statement, after the attributes are declared.
 Syntax of create table command :

 CREATE TABLE table_name (

 Column_name 1 data type [NOT NULL],
 :
 :

 Column_name n data_type [NOT NULL]);
 The variables are defined as follows :
 If NOT NULL is not specified, the column can have NULL values.
 table_name - is the name for the table.
 column_name 1 to column_name n - are the valid column names or attributes.
 NOT NULL – It specifies that column is mandatory. This feature allows you to
prevent data from being entered into table without certain columns having data in
them.
 Examples of CREATE TABLE Command :

 (1) Create Table Employee

 (E_name varchar2 (20) NOT NULL,

 B_Date Date,

 Salary Decimal (10, 12)

 Address Varchar2 (50);

 (2) Create Table Student

 (Student_id Varchar2 (20) Not Null,

 Last_Name Varchar2 (20) Not Null,

 First_name Varchar2 (20),

 BDate Date,

 State Varchar2 (20),

 City Varchar2 (20));

 (3) Create Table Course

 (Course_id Varchar2 (5),

 Department_id Varchar2 (20),

 Title Varchar2 (20),

 Description Varchar2 (20));

Constraints in CREATE TABLE Command :

 CREATE TABLE Command lets you enforce several kinds of constraints on a
table : primary key, foreign key and check condition, unique condition.

 A constraint clause can constrain a single column or group of columns in a table.
There are two ways to specify constraints :
 • As part of the column definition i.e. a column constraint.
 • Or at the end of the create table command i.e. a table constraint.

 Clauses that constrain several columns are the table constraints.
The Primary Key :

 A table's primary key is the set of columns that uniquely identifies each row in the
table. CREATE TABLE command specifies the primary key as follows :

 create table table_name (

 Column_name 1 data_type [not null],

 :

 :

Column_name n data type [NOT NULL],

[Constraint constraint_name]

Data Manipulation & Control / 9

[Primary key (Column_name A, Column_name B… Column_name X)]);

Variables are defined as follows :

table_name is the name for the table.
column_name 1 through column_name n are the valid column names
data_type is valid datatype

constraint which is optional
constraint_name identifies the primary key
column_name A through column_name X are the table's columns that compose the
primary key.

Example :

 Create table Employee

 (E_name Varchar2 (20),

 B_Date Date,

 Salary Decimal (10, 2),

 Address Varchar2 (80),

 Constraint PK_Employee

 Primary key (Ename));

 Create table_student

 (Student_id Varchar2 (20),

 Last_name Varchar2 (20) NOT NULL,

 First_name Varchar2 (20),

 B_Date Date,

 State Varchar2 (20),

 City Varchar2 (20),

 Constraint PK_Student

 Primary key Student_id));

 Create Table_Course

 (Course_id Varchar2 (5),

 Department_id Varchar2 (20),

 Title Varchar2 (20),

 Description Varchar2 (20),

 Constraint PK_Course

 Primary key (Course_id, Department_id));

 Note : We do not specify NOT NULL constraint for those columns which form the
primary key, since those are the mandatory columns by default. Primary keys are
subject to several restrictions.

 (i) A column that is a part of the primary key cannot be NULL.
 (ii) A column that is defined as LONG, or LONG RAW (ORACLE data types)

cannot be a part of primary key.
 (iii) The maximum number of columns in the primary key is 16.

Foreign Key : A foreign key is a combination of columns with values based on the
primary key values from another table. A foreign key constraint also known as a
referential integrity constraint, specifies that the values of the foreign key correspond to
actual values of primary key in other table.

 Create table command specifies the foreign key as follows :

 Create Table table_name

 (Column_name 1 data type [NOT NULL],

 Oracle / 10

 :

 :

 Column_name N data type [NOT NULL],

 [constraint constraint_name

 Foreign key (column_name F1 … Column_name FN) references referenced-
table (column_name P1, … column_name PN)]);

table_name - is the name for the table.
Column_name 1 through column_name N are the valid columns.

constraint_name is the name given to foreign key.
referenced_table - is the name of the table referenced by the foreign key declaration.
column_name F1 through column_name FN are the columns that compose the foreign

key.
Column_name P1 through column_name PN are the columns that compose the primary

key in referenced-table.

Examples :

 Create table_department
 (Department_id Varchar2 (20),

 Department_name Varchar2 (20),
 Constraint PK_Department
 Primary key (Department_id));

 Create table_course
 (Course_id Varchar2 (20),
 Department_id Varchar2 (20),

 Title Varchar2 (20),
 Description Varchar2 (20),
 Constraint PK_course

 Primary key (Course_id, Department_id),
 Constraint FK - course
Foreign key (Department_id) references Department (Department_id));

 Thus, primary key of course table is (Course_id, Department_id).
 The primary key of Department table is (Department_id).
 Foreign key of course table is (Department_id) which references the department
table.
 When you define a foreign key, the DBMS verifies the following :
 (1) A primary key has been defined for table referenced by the foreign key.

 (2) The number of columns composing the foreign key matches the number of
primary key columns in the referenced table.

 (3) The datatype and width of each foreign key columns matches the datatype
and width of each primary key column in the referenced table.

Unique Constraint or Candidate key :

 A candidate key is a combination of one or more columns, the values of which
uniquely identify each row of the table. Create table command specifies the unique
constraint as follows :

 CREATE TABLE table_name
 (column_name 1 data_type [NOT NULL],
 :

 :
 column_name n data_type [NOT NULL],
 [constraint constraint_name

 Unique (Column_name A,……… Column_nameX)]);
 Example :

Data Manipulation & Control / 11

 Create table student

 (Student_id Varchar2 (20),

 Last_name Varchar2 (20), NOT NULL,

 First_name Varchar2 (20), NOT NULL,

 BDate Date,

 State Varchar2 (20),

 City Varchar2 (20),

 Constraint UK-student

 Unique (last_name, first_name),

 Constraint PK-student

 Primary key (Student_id));

 A unique constraint is not a substitute for a primary key. Two differences between
primary key and unique constraints are :

 (1) A table can have only one primary key, but it can have many unique
constraints.

 (2) When a primary key is defined, the columns that compose the primary key are
automatically mandatory. When a unique constraint is declared, the columns
that compose the unique constraint are not automatically defined to be
mandatory, you must also specify that the column is NOT NULL.

Check Constraint :

 Using CHECK constraint SQL can specify the data validation for column during
table creation. CHECK clause is a Boolean condition that is either TRUE or FALSE. If
the condition evaluates to TRUE, the column value is accepted by database, if the
condition evaluates to FALSE, database will return an error code.
 The check constraint is declared in CREATE TABLE statement using the syntax :

 Column_name datatype [constraint constraint_name] [CHECK (Condition)]
 The variables are defined as follows :
 Column_name - is the column name

 data_type - is the column's data type
constraint_name - is the name given to check constraint condition is the legal
SQL

Condition that returns a Boolean value.
 Examples :

 Create table_worker

 (NameVarchar2 (25) NOT NULL,

 Age Number Constraint CK_worker

 CHECK (Age Between 18 AND 65));

 Create table_instructor

 (Instructor_id Varchar2 (20),

 Department_id Varchar2 (20) NOT NULL,

 Name Varchar2 (25),

 Position Varchar2 (25)

 Constraint CK_instructor

CHECK (Position in ('ASSISTANT PROFESSOR', 'ASSOCIATE PROFESSOR', 'PROFESSOR')),

 Address Varchar2 (25),

 Constraint PK_instructor

 Primary key (Instructor_id));

 If the position of the instructor is not one of the three legal values, DBMS will
return an error code indicating that a check constraint has been violated.

 More than one column can have check constraint.

 Create table_Patient

 Oracle / 12

 (Patient_id Varchar2 (25) Primary key,

 Body_Temp Number (4, 1)

 Constraint Patient_BT

 CHECK (Body_Temp >= 60.0 and

 Body_Temp <= 110.0),

 Insurance_StatusChar(1)

 Constraint Patient_IS

 CHECK (Insurance-Status in ('Y', 'y', 'N', 'n')));

 One column can have more than one CHECK constraint.

 Create table_Loan - application

 (loan_app_no number (6) primary key,

 Name Varchar2 (20),

 Amount_requestednumber (9, 2) NOT NULL,

 Amount_approvednumber (9, 2)

 Constraint Amount_approved_limit

 Check (Amount_approved <= 10,00,000)

 Constraint Amount_Approved_Interval

 Check (Mod (Amount_Approved, 1000) = 0));

Establishing a Default value for a column :

 By using DEFAULT clause when defining a column, you can establish a default
value for that column. This default value is used for a column, whenever, row is
inserted into the table without specifying the column in the INSERT statement.
 Example :

 Create table_student

 (Student_id Varchar2 (20),

 Last_name Varchar2 (20) NOT NULL,

 First_name Varchar2 (20) NOT NULL,

 B_Date Date,

 State Varchar2 (20),

 City Varchar2 (20), DEFAULT 'PUNE'.

 Constraint PK_student

 Primary key (Student_id);

 2. ALTER TABLE Command :

 You can modify a table's definition using ALTER TABLE command. This statement
changes the structure of a table, not its contents. Using ALTER TABLE command, you
can make following changes to the table.

 (1) Adding a new column to an existing table.
 ALTER TABLE table_name
 ADD (Column_name datatype
 :
 :
 Column_name n datatype);
Example :
 SQL> Describe Department;

 Name NULL? Type
 Department_id Varachar2 (20)
 Department_name Varachar2 (20)
 SQL> Alter table Department ADD (University
 Varchar2 (20),

Data Manipulation & Control / 13

 No_of_student Number (3));
 SQL> Describe Department;
 Name Null Type
 Department_id Varachar2 (20)
 Department_Name Varachar2 (20)
 University Varachar2 (20)
 No_of_student Varachar2 (20)

(2) Modify an existing column in the existing table.
 ALTER TABLE table_name
 MODIFY (Column_name datatype : constraint,
 … Column_name datatype : constraint,);

 A column in the table can be modified in following ways -
 (i) Changing a column definition from NOT NULL to NULL i.e. from
mandatory to optional

 Consider a table ex_table.
 SQL> describe ex_table;

 Name NULL? Type
 Record_no NOTNULL Numbers (38)

 Description Varchar2 (40)
 Current_value NOT NULL Number
 SQL> Alter Table ex_table;
 modify (current_value number Null);
 Table altered
 SQL> Describe ex_table;

 Name NULL? Type
 Record_No NOT NULL Number (38)
 Description Varchar2 (40)
 Current_value Number
 (ii) Changing a column definition from NULL to NOT NULL.

 If a table is empty, you can define a column to be NOT NULL. However, if
table is not empty, you cannot change a column to NOT NULL unless every row in the
table has a value for that particular column.
 (iii) Increasing and Decreasing a Column's Width :

 You can increase a character column's width and can increase the number of
digits in a number column at any time.
 Example :

 SQL> Describe ex_table;
 Name NULL ? Type

 Record_No NOT NULL Number (38)
 Description Varchar2 (40)
 Current_value NOT NULL Number
 SQL> Alter table ex_table
 modify (Description Varchar2 (50));
 Table altered
 SQL> Describe ex_table;

 Name NULL ? Type
 Record_No NOT NULL Number (38)
 Description Varchar2 (50)
 Current_value NOT NULL Number

 You can decrease a column's width only if the table is empty or if that column
is NULL for every row of table.

 (3) Adding a constraint to an existing table :

 Any constraint i.e. a primary key, foreign key, unique key or check
constraint can be added to an existing table using ALTER TABLE command.

 ALTER TABLE table_name

 Oracle / 14

 ADD (constraint)
 Example :

 SQL> Create Table ex_table
 (Record_No Number (38),
 Description Varchar2 (40),
 Current_value Number);
 Table created
 SQL> Alter Table ex_table add
 (Constraint PK_ex_table primary key (Record-No));
 Table Altered.
 (4) Dropping the constraints
 ALTER TABLE table_name
 DROP Primary key
 Using this you can drop primary key of table.
 ALTER TABLE Table_name
 DROP constraint constraint_name
 Using this you can drop any constraint of the table.
Rules for adding or modifying a column :

 Following are the rules for adding column to a table :
 (1) You may add a column at any time if NOT NULL is not specified.
 (2) You may add a NOT NULL column in three steps :

 (i) Add a column without NOT NULL specified,
 (ii) Fill every row in that column with data,
 (iii) Modify the column to be NOT NULL.

 Following are the rules to modify a column.
(1) You can increase a character column's width at any time.
(2) You can increase the number of digits in a NUMBER column at any time.

(3) You can increase or decrease the number of places in a NUMBER column
at any time.

 If a column is NULL for every row of the table, you can make following
changes.

 (i) You can change its data type
 (ii) You can decrease a character column's width
 (iii) You can decrease the number of digits in a NUMBER column.

 3. DROP TABLE Command :

 Dropping a table means to remove the table's definition from the database.
DROP TABLE command is used to drop the table as follows :

 DROP TABLE table_name;
 Example :

 (1)SQL > Drop table_student;

 Table dropped
 (2)SQL > Drop table instructor;
 Table dropped.

 You drop a table only when you no longer need it.
 Note : The truncate command in ORACLE can also be used to remove only
the rows or data in the table and not the table definition.
Example :

 Truncate student
 Table truncated
 Truncating cannot be rolled back.

2.4 DATA MANIPULATION LANGUAGE COMMANDS

The SQL DML includes commands to insert tuples into database, to delete tuples from
database and to modify tuples in the database.

Data Manipulation & Control / 15

 It includes a query language based on both relational algebra and tuple relational
calculus.

 In this section we'll study following SQL DML commands.
 INSERT
 DELETE

 UPDATE
 SELECT
 1. INSERT Command :

 The syntax of insert statement is :
 INSERT INTO table_name
 [(column_name [, column_name] …… [, column_name])]

 VALUES
 (column_value [, column_value] …… [, column_value]);
The variables are defined as follows :

Table_name - is the table in which to insert the row.
column_name - is a column belonging to table.
column_value - is a literal value or an expression whose type matches the
corresponding column_name.

 The number of columns in the list of column_names must match the number of
literal values or expressions that appear in parenthesis after the keyword values.
 Example :

 SQL> Insert into Employee
 (E_name, B_Date, Salary, Address)
 Values

 ('Sachin', '21-MAR-73', 50000.00, 'Mumbai');
 row created
 SQL> Insert into student

 (Student_id, Last_name, First_name)
 Values
 ('SE201', 'Tendulkar', 'Sachin');

 row created
 If the column names specified in Insert statement are more than values, then it
returns an error.
 Column and value datatype must match.

 According to the syntax of INSERT statement, column list is an optional element.
Therefore, if you do not specify the column names to be assigned values, it (DBMS) by
default uses all the columns. The column order that DBMS uses is the order in which
the columns were specified, when the table was created. However, use of Insert
statement without column list is dangerous.

 For example,
 SQL> Describe ex_class;

 Name NULL ? Type

 Class_building NOT NULL Varchar2 (25)
 Class_room NOT NULL Varchar2 (25)
 Seating_capacity Number (38)

 SQL> Insert into ex_class
 Values
 ('250', 'Kothrud Pune', 500);

 1 row created.

 The row is successfully inserted into the table, because, value and column data
types were matching.

 But the value 250 is not a correct value for column class_building.

 The use of insert without column list may cause following problems.

 Oracle / 16

 1. The table definition might change, the number of columns might decrease or
increase, and the INSERT fails as a result.

 2. The INSERT statement might succeed but the wrong data could be entered in
the table.

 2. DELETE Command :

 The syntax of delete statement is :

 DELETE FROM table_name

 [WHERE condition]

 The variables are defined as follows :

 table_name - is the table to be updated.

 condition - is a valid SQL condition.

 DELETE Command without WHERE clause will empty the table
completely.

 Example :

 SQL> Delete from Student

 Where Student_id = 'SE 201';

 1 row deleted.

 SQL> Detete from student

 Where first_name = 'Sachin' and

 Student_id ='SE 202';

 1 row deleted.

 3. UPDATE Command :

 If you want to modify existing data in the database, UPDATE command can be
used to do that. With this statement you can update zero or more rows in a table.

 The syntax of UPDATE command is :

 UPDATE table_name

 SET column_name : : expression

 [, column_name : : expression]

 [, column_name : : expression]

 [where condition]

 The variables are defined as follows :

 table_name is the table to be updated

 column_name is a column in the table being updated.

 expression is a valid SQL expression.

 condition is a valid SQL condition.

 The UPDATE statement references a single table and assigns an expression to at
least one column. The WHERE clause is optional; if an UPDATE statement does not
contain a WHERE clause, the assignment of a value to a column will be applied to all
rows in the table.
 Example :

 SQL> Update Student
 Set

 City = 'Pune',
 State = 'Maharashtra';
 SQL> Update Instructor

 Set
 Position = 'Professor'
 where

 Instructor_id = 'P3021';
 SQL Grammar :

 Here, are some grammatical requirements to keep in mind when you are working
with SQL.

Data Manipulation & Control / 17

 1. Every SQL statement is terminated by a semicolon.
 2. An SQL statement can be entered on one line or split across several lines for

clarity.
 3. SQL isn't case sensitive. You can mix uppercase and lowercase when
referencing SQL keywords (Such as SELECT and INSERT), table names, and column
names.

 However, case does matter when referencing to the contents of a column.
 For Example : If you ask for all customers whose last names begin with 'a' and all
customer names are stored in uppercase, you won't receive any rows at all.
 4. SELECT Command :

The basic structure of an SQL expression consists of three clauses :
 select, from and where
 • The select clause corresponds to the projection operation of the relational

algebra.
It is used to list the attributes desired in the result of a query.

 • The from clause corresponds to the cartesian product operation of the
relational algebra. It lists the relations to be scanned in the elevation of the
expression.

 • The where clause corresponds to the selection predicate of the relational
algebra.
It consists of predicate involving attributes of the relations that appear in the
from clause.

 Simple SQL query i.e. select statement has the form :
 select A1, A2, ……, An

 from r1, r2, ……, rm

where P.
 The variables are defined as follows :

 A1, A2, …, An represent the attributes.

 r1, r2, …, rm represent the relations from which the attributes are selected.

 P - is the predicate.
 This query is equivalent to the relational algebra expression
 A1 A2… An

 (sp (r1 × r2 × r3 … × rm))

 where clause is optional. If the where clause is omitted, the predicate P is true.

 Select clause forms the cartesian product of relations named in the from clause,

performs a relational algebra selection using the where clause and then projects the

results onto the attributes of the select clause.

 A simple select statement :

 At a minimum, select statement contains the following two elements.

 • The select list, the list of columns to be retrieved.

 • The from clause, the tables from which to retrieve the rows.

 Example : Consider the student database table.

(1) A simple select statement - a query that retrieves only student_id from the

student table is given

 SQL> select student_id

 from student;

 student_id

 S 10231

 S 10232

 S 10233

 S 10234

 S 10235

 S 10236

 Oracle / 18

 6 rows selected.

 (2) To select student_id and students Last name, the select statement is :

 SQL> select student_id, First_name

 from student;

 student_id First_name

 S 10231 Sachin

 S 10232 Rahul

 S 10233 Ajay

 S 10234 Sunil

 S 10235 Kapil

 S 10236 Anil

 6 rows selected.

To select all columns in the table you can use

 select *

 from table_name;
 Example :
 SQL> select *
 from student;

student_id Last_name First_name B Date State City

S 10231
S 10232

S 10233
S 10234
S 10235

S 10236

Deshpande
Gandhi

Kapur
Kulkarni

Dev

Kumar

Sachin
Rahul

Ajay
Sunil
Kapil

Anil

12/3/78
9/2/58

7/12/62
6/9/75
2/3/71

5/9/80

Maharashtra
Delhi

Maharashtra
Maharashtra
Tamilnadu

Maharashtra

Pune
Delhi

Bombay
Pune

Madras

Bombay

 The results returned by every SELECT statement constitutes a temporary table.
Each received record is a row in this temporary table, and each element of the select
list is a column. If a query does not return any record, the temporary - table can be
thought of as empty.

 Expressions in the select list :
 In addition to specifying columns, you also can specify expressions in the select
list.
 Following arithmetic operators can be used in select list :

Description Operator

Addition

Subtraction
Multiplication

Division

+

–
*
/

 For example, consider the following queries using operators in select list :
SQL> Select E_name, Salary * 1000

 from Employee;
 E_name Salary * 1000

 Sachin 1,00,00,000
 Rahul 2,00,00,000
 Ajay 1,00,00,000

 Anil 1,00,00,000
 4 rows selected.

Data Manipulation & Control / 19

SQL> Select Ename, Salary + 10000
 from Employee;

 E_name Salary + 10000

 Sachin 20,000
 Rahul 30,000

 Ajay 20,000
 Anil 30,000

 4 rows selected.
Select statement using where clause :

 select and from clauses provide you with either some columns and all rows or all
columns and all rows. But if you want only certain rows, you need to add another
clause, the where clause.
 where clause consists of one or more conditions that must be satisfied before a
row is retrieved by the query.
 It searches for a condition and narrows your selection of data.

 For example, consider select statement with where clause given below :
SQL> Select Student_id, First_name
 from Student

 where Student_id = 'S10234';
 Student_id First_name

 S10234 Sunil

 1 row selected
SQL> Select E_name Salary
 from Employee

 where Salary > 10000;
 E_name Salary

 Rahul 20000
 Anil 20000
 2 row selected
 where uses the logical connectives : and, or and not.

 where clause uses the comparison operators

Description Operator

Less than

Less than or equal to
Greater than

Greater than or equal to

Equal to
Not equal to

<

<=
>

>=

=
!= or < >

SQL> Select E_name, Salary
 from Employee

 where Salary > 10000 and E_name = Anil
 Ename Salary

 Anil 20000

 1 row selected.
5. Views in SQL :

 A view in SQL terminology is a single table that is derived from other tables. These
other tables could be base tables or previously defined views. A view does not
necessarily exist in physical form; it is considered a virtual table in contrast to base
tables whose tuples are actually stored in the database. This limits the possible update
operations that can be applied to views but does not provide any limitations on
querying a view. We can think of view as a way specifying a table that we need not
exist physically.

 Oracle / 20

Specification of Views in SQL :

 The command to specify a view is CREATE VIEW. 'We give the view a table
name, a list of attribute names, and a query to specify the contents of view. If none of
the view attributes result from applying functions or arithmetic operations, we do not
have to specify attribute names for the view as they will be the same as the names of
the attributes of the defining tables.
Example :

 Consider the following relation scheme and corresponding relation.
 employee_schema (emp_name, street, city)
 works_schema (emp_name, comp_name, salary

 company_schema (comp_name, city)

emp_name street city

Sachin
Rahul

Raj
Ajay
Anil

Sunil

XYZ
ABC

ABC
XYZ
XYZ

ABC

Pune
Bombay

Pune
Bombay
Delhi

Bombay

emp_name Comp_name salary

Sachin
Rahul

Raj
Ajay
Anil

Sunil

TCS
MBT

PCS
MBT
PCS

TCS

10000
12000

13000
14000
15000

11000

Comp_name city

TCS

MBT
PCS

Delhi

Bombay
Pune

 Create view emp_detail (emp, comp, street, city)

 As select C.emp_name, C.comp_name, E.street, E.city

 from Employee E.company C

 where E.emp_name = C.emp_name;

 A view is always up date; if we modify the base tables on which the view is
defined, the view automatically reflects these changes. Hence, the view is not
realized at the time of view definition but rather at the time we specify a query on
the view. It is the responsibility of the DBMS and not the user to make sure that
the view is up to date.

 If we do not need a view any more, we can use the DROP VIEW command to
dispose of it.

 Drop View emp_detail;

Updating of views :

(1) A view with a single defining table is up datable if the view attributes
contain the primary key or some other candidate key of the base relation,
because this maps each view tuple to a single base tuple.

(2) Views defined on multiple tables using joins are generally not updatable.

(3) Views defined using grouping and aggregate functions are not updatable.

Data Manipulation & Control / 21

Example :

 Consider the view consisting of branch names and names of customers who have
either an account or a loan at that branch.

SQL> Create view all_customer as
 (select branch_name, customer_name

 from depositor, account
 where depositor·account_number =
 account·account·account_no)

 Union
 (select branch_name, customer_name
 from borrower

 where borrower·loan_number = loan·loan_number);
 The attribute names of a view can be specified explicitly as follows :

SQL> Create view branch_total_loan (branch_name,
 total_loan) as

 select branch_name, sum (amount)
 from loan
 group by branch_name;

6. Indexes in SQL : SQL has statements to create and drop indexes on attributes
of base relation. These commands are generally considered to be part of the SQL data
definition language (DDL).
 An index is a physical access structure that is specified on one or more attributes
of the relation. The attributes on which an index is created are termed indexing
attributes. An index makes accusing tuples based on conditions that involve its
indexing attributes more efficient. This means that in general executing a query will
take less time if some attributes involved in the query conditions were indexed than if
they were not. This improvement can be dramatic for queries where large relations are
involved. In general, if attributes used in selection conditions and in join conditions of a
query are indexed, the execution time of the query is greatly improved.
 In SQL indexed can be created and dropped dynamically. The create Index
command is used to specify an index. Each index is given a name, which is used to
drop the index when we do not need it any more.

Example :

 Create Index Emp_Index
 ON Employee (Emp_name);

 In general, the index is arranged in ascending order of the indexing attribute
values. If we want the values in descending order we can add the keyword DESC after
the attribute name. The default in ASC for ascending. We can also create an index on
a combination of attributes.

Example :

 Create Index Emp_Index1
 ON Employee (Emp_name ASC,
 Comp_name DESC);

 There are two additional options on indexes in SQL. The first is to specify the key
constraint on the indexing attribute or combination of attributes.
 The keyword unique following the CREATE command is used to specify a key.
The second option on index creation is to specify whether on index is clustering index.
The keyword cluster is used in this case of the end of the create Index command. A
base relation can have atmost one clustering index but any number of non_clustering
indexes.
 To drop an index, we issue the Drop Index command. The reason for dropping
indexes is that they are expensive to maintain whenever the base relation is updated
and they require additional storage. However, the indexes that specify a key constraint
should not be dropped as long as we want the system to continue enforcing that
constraint.

 Oracle / 22

Example :

 Drop Index Emp_Index;
7. Sequences
The quickest way to retrieve data from a table is to have a column in the table whose
data uniquely identifies a row.By using this column and a specific value in the WHERE
condition of a SELECT sentence the oracle engine will be able to identify and retrieve
the row the fastest.
To achieve this , a constraint is attached to a specific column in the table that ensures
that the column is never left empty and that the data values in the column are
unique.Since human beings do data entry,it is quite likely that a duplicate value could
be entered ,which violets this constraint and the entire row is rejected.
If the value entered into this column is computer generated it will always fulfill the
unique constraint and the row will always be accepted for storage.
Oracle provides an object called a sequence that can generate numeric values. The
value generated can have a maximum of 38 digits. A sequence can be defined to:
-Generate numbers in ascending or descending order
-Provide intervals between numbers
-Caching of sequence numbers in memory to speed up their availability
A sequence is an independent object and can be used with any table that requires
its output.

Creating Sequences
Always give sequence a name so that it can be referenced later when required.
The minimum information required for generating numbers using a sequence is :
-The starting number
-The maximum number that can be generated by a sequence
- The increment value for generating the next number
This information is provided to oracle at the time of sequence creation

Syntax:
CREATE SEQUENCE <SequenceName>
[INCREMENT BY <IntegerValue>
[START WITH <IntegerValue>
MAXVALUE <IntegerValue> / NOMAXVALUE
MINVALUE <IntegerValue> /NOMINVALUE
CYCLE/NOCYLCLE
CACHE <IntegerValue>/NOCACHE
ORDER/NOORDER]

Keywords and Parameters

INCREMENT BY : -Specifies the interval between sequence numbers. It can be any
positive or negative value but not zero.If this clause is omitted ,the default value is 1 .

MINVALUE :- Specifies the sequence minimum value.

NOMINVALUE :Specifies a minimum value of 1 for an ascending sequence and –
(10)^26 for a descending sequence.

MAXVALUE: Specifies the maximum value that a sequence can generate.

NOMAXVALUE : Specifies a maximum of 10^27 for an ascending sequence or -1 for
a descending sequence. This is the default clause.

START WITH :Speciifes the first sequence number to be generated. The default for an
ascending sequence is the sequence minimum value(1) and for a descending
sequence, it is the maximum value(-1)

CYCLE: Specifies that the sequence continues to generate repeat values after
reaching either its maximum value.

NOCYCLE: Specifies that a sequence cannot generate more values after reaching the
maximum value.

Data Manipulation & Control / 23

CACHE :Specifies how many values of a sequence oracle pre-allocates and keeps in
memory for faster access.The minimum value for this parameter is two.

NOCHACHE :Specifies that values of a sequence are not pre-allocated.

ORDER :This guarantees that sequence numbers are generated in the order of
request.This is only necessary if using parallel server in parallel mode option .In
exclusive mode option ,a sequence always generates numbers in order.

NOORDER :This does not guarantee sequence numbers are generated in order of
request.This is only necessary if you are using parallel server in parallel mode option.
If the ORDER/NOORDER clause is omitted , a sequence takes the NOORDER clause
by default.

Example
Create a sequence by the name ADDR_SEQ ,which will generate numbers from 1
uptp 9999 in ascending order with an interval of 1.The sequence must restart from the
number 1 after generating number 999.
CREATE SEQUENCE ADDR_SEQ INCREMENT BY 1 START WITH 1 MINVALUE 1
MAXVALUE 999 CYCLE ;

Referencing a sequence
Once a sequence is created SQL can be used to view the values held in its cache.To
simply view sequence value use a SELECT sentence as described below.
SELECT <SequenceName>.Nextval from DUAL ;
This will display the next value held in the cache on the VDU screen. Everytime
nextval references a sequence its output is automatically incremented from the old
value to the new value ready for use.
To reference the current value of a sequence:
SELECT <SequenceName>.CurrVal FROM DUAL;

Dropping a Sequence
The DROP SEQUENCE command is used to remove the sequence from the
database.
Syntax:
DROP SEQUENCE <SequenceName> ;

2.5 DATA CONTROL LANGUAGE
 The data control language commands are related to the security of database. They
perform tasks of assigning privilages, so users can access certain objects in the
database. This section deals with DCL commands.
 1. GRANT Command :

 The objects created by one user are not accessible by another user unless the
owner of those objects gives such permissions to other users. These permissions can
be given by using the GRANT statement. One user can grant permission to another
user if he is the owner of the object or has the permission to grant access to other
users.
 The grant statement provides various types of access to database objects such as
tables, views and sequences.

Syntax :

 GRANT {object privilages}
 ON object name

 To user name
 [with GRANT OPTION]

Object privilages :

 Each object privilage that is granted authorizes the grantee to perform some
operations on the object. The user can grant all the privilages or grant only specific
object privilages.
 The list of object privilages is as follows :
 Alter - allows the grantee to change the table definition with the ALTER TABLE
command.

 Oracle / 24

Delete - allows the grantee to remove the records from the table with the DELETE
command.
Index - allows the grantee to create an index on table with the CREATE INDEX
command.
Insert - allows the grantee to add records to the table with the INSERT command.
Select - allows the grantee to query the tables with SELECT command.

Update - allows the grantee to modify the records in tables with UPDATE command.
With grant option : It allows the grantee to grant object privilages to other users.

 Example 1 : Grant all privilages on student table to user Pradeep.

 SQL > GRANT ALL
 ON student
 To Pradeep;
 Example 2 : Grant select and update privilages on student table to mita

 SQL> GRANT SELECT, UPDATE
 ON student

 To Mita;
 Example 3 : Grant all privilages on student table to user Sachin with grant

option.

 SQL> GRANT ALL
 ON student
 To Sachin

 WITH GRANT OPTION;

2. REVOKE Command :

 The REVOKE statement is used to deny the grant given on an object.
Syntax :

 REVOKE {object privilages}

 ON object name
 FROM user name;

The list of object privilages is :
Alter - allows the grantee to change the table definition with the ALTER TABLE
command.
Delete - allows the grantee to remove the records from the table with the DELETE
command.
Index - allows the grantee to create an index on table with the CREATE INDEX
command.
Insert - allows the grantee to add records to the table with the INSERT command.

Select - allows the grantee to query the tables with SELECT command.
Update - allows the grantee to modify the records in tables with UPDATE command.

You cannot use REVOKE command to perform following operations :

 1. Revoke the object privilages that you didn't grant to the revokee.

2. Revoke the object privilages granted through the operating system.
Example 1 : Revoke Delete privilege on student table from Pradeep.

 REVOKE DELETE

 ON student
 From Pradeep;

Example 2 : Revoke the remaining privilages on student that were granted to
Pradeep.

 Revoke ALL
 ON student

 FROM Pradeep

Data Manipulation & Control / 25

3. COMMIT Command :

 Commit command is used to permanently record all changes that the user has
made to the database since the last commit command was issued or since the
beginning of the database session.
Syntax :

 COMMIT;
Implicity COMMIT :

 The actions that will force a commit to occur even without your instructing it to are :
 quit, exit,

 create table or create view
 drop table or drop view
 grant or revoke
 connect or disconnect
 alter
 audit and non-audit

 Using any of these commands is just like using commit. Until you commit, only you
can see how your work affects the tables. Anyone else with access to these tables will
continue to get the old information.

4. ROLLBACK command :

 The ROLLBACK statement does the exact opposite of the commit statement. It
ends the transaction but undoes any changes made during the transaction. Rollback is
useful for two reasons :

 (1) If you have made a mistake, such as deleting the wrong row for a table, you
can use rollback to restore the original data. Rollback will take you back to
intermediate statement in the current transaction, which means that you do not have to
erase the entire transaction.

 (2) ROLLBACK is useful if you have started a transaction that you cannot
complete. This might occur if you have a logical problem or if there is an SQL
statement that does not execute successfully. In such cases rollback allows you to
return to the starting point to allow you to take corrective action and perhaps try again.

 Syntax : ROLLBACK [WORK] [TO [SAVEPOINT] save point]

where

 WORK - is optional and is provided for ANSI compatibility
 SAVEPOINT - is optional and is used to rollback a partial transaction, as far as
the specified save point.

 Savepoint : is a savepoint created during the current transaction.

 Using rollback without savepoint clause.

 1. Ends the transaction.
 2. Undoes all the changes in the current transaction.
 3. Erases all savepoints in that transaction

 4. Releases the transaction locks.

 Using rollback with the to savepoint clause.

 1. Rolls back just a portion of the transaction.
 2. Retains the savepoint rolled back to, but losses those created after the named

savepoint.
 3. Releases all tables and row locks that were acquired since the savepoint was

taken.
 Example :

 To rollback entire transaction : ROLLBACK,

To rollback to savepoint sps : ROLLBACK TO SAVEPOINT sps;

 Oracle / 26

Savepoints :

 Savepoints mark and save the current point in the current processing of a
transaction. Used with the ROLLBACK statement, savepoints can undo part of a
transaction.
 By default the maximum number of savepoints per transaction is 5. An active
savepoint is the one that is specified since the last commit or rollback.

Syntax : SAVEPOINT savepoint :

 After a savepoint, is created, you can either continue processing, commit your
work rollback the entire transaction, or rollback to the savepoint.

 2.6 SELECT QUERY AND CLAUSES

The basic structure of an SQL expression consists of three clauses :

 select, from and where,
• The select clause corresponds to the projection operation of the relational

algebra.
It is used to list the attributes desired in the result of a query.

• The from clause corresponds to the cartesian product operation of the
relational algebra. It lists the relations to be scanned in the elevation of the
expression.

• The where clause corresponds to the selection predicate of the relational
algebra.
It consists of predicate involving attributes of the relations that appear in the
from clause.

 Simple SQL query i.e. select statement has the form :
 select A1, A2, …… , An

 from r1, r2, …… , rm

 where P.

 The variables are defined as follows :
 A1, A2, … , An represent the attributes.

 r1, r2, … , rm represent the relations from which the attributes are selected.

 P - is the predicate.
 This query is equivalent to the relational algebra expression
 A1 A2… An

 (sp (r1 × r2 × … × rm))

 where clause is optional. If the where clause is omitted, the predicate P is true.
Select clause forms the cartesian product of relations named in the from clause,
performs a relational algebra selection using the where clause and then projects the
results onto the attributes of the select clause.

 The purpose of select statement is to retrieve and display data from one or more
database tables It is an extremely powerful statement capable of performing the
equivalent relational algebra’s Selection, Projection, and Join operations in a single
statement. Select is the most frequently used SQL command and has the following
general form :

SELECT DISTINCT |ALL]
FROM Table_Name [alias][,…]
[WHERE condition]

[GROUP BY column_List] [HAVING condition]
[ORDER BY column_List]
The sequence of processing in a select statement is :

FROM
WHERE
GROUP BY

HAVING

Data Manipulation & Control / 27

SELECT
ORDER BY

 The order of the clauses in the select command can not be changed. The only two
mandatory columns are : SELECT and FROM, the remainder are optional.

1. Expressions in the select list :

 In addition to specifying columns, you also can specify expressions in the select
list.
 Following arithmetic operators can be used in select list :

Description Operator

Addition
Subtraction
Multiplication

Division

+
–
*

/

For example, consider the following queries using operators in select list :
SQL> Select E_name, Salary * 1000

from Employee;

 E_name Salary * 1000
 Sachin 1,00,00,000
 Rahul 2,00,00,000
 Ajay 1,00,00,000
 Anil 1,00,00,000

 4 rows selected.
SQL> Select E_name, Salary + 10000
 from Employee;

 E_nam Salary + 10000
 Sachin 20,000
 Rahul 30,000
 Ajay 20,000
 Anil 30,000
 4 rows selected.
2. Select statement using where clause :

 select and from clauses provide you with either some columns and all rows or all
columns and all rows. But if you want only certain rows, you need to add another
clause, the where clause.
 where clause consists of one or more conditions that must be satisfied before a
row is retrieved by the query.
 It searches for a condition and narrows your selection of data.
 For example, consider select statement with where clause given below :

SQL> Select Student_id, First_Name
 from Student
 where Student_id = 'S10234';

 Student_id First_name

 S10234 Sunil
 1 row selected

SQL> Select E_name Salary
 from Employee
 where Salary > 10000

 E_name Salary

 Rahul 20000
 Anil 20000

 2 row selected

 Oracle / 28

where uses the logical connectives : and, or and not.

 where clause uses the comparison operators

Description Operator

Less than

Less than or equal to

Greater than

Greater than or equal to

Equal to

Not equal to

<

<=

>

>=

=

!= or < >

SQL> Select E_name, Salary
 from Employee
 where Salary>10000 and Ename = Anil
 E_name Salary

 Anil 20000
 1 row selected.

Range Searching
In order to select data that is within a range of values ,the BETWEEN operator is used.
The BETWEEN operator allows the selection of rows that contain values within a
specified lower and upper limit. The range coded after the word BETWEEN is
inclusive.
The lower value must be coded first.The two values in between the range must be
linked with the keyword AND.The BETWEEN operator can be used with both character
and numeric data types.However the datatypes can not be mixed.i.e the lower value of
a range of values from a character column and the other from a numeric column.
Example 1 : List the transactions performed in months of January to March

Solution :
SELECT * FROM TRANS_MSTR WHERE TO_CHAR(DT,’MM’) BETWEEN 01 AND
03 ;
Equivalent to
SELECT * FROM TRANS_MSTR WHERE TO_CHAR (DT,’MM’)>=01 AND
TO_CHAR(DT,’MM’)<=03;

Explanation
The above select will retrieve all those records from the ACCT_MSTR table where the
value held in the DT field is between 01 and 03 (both values inclusive).This is done
using TO_CHAR() function which extracts the month value from the DT field. This is
then compared using the AND operator.

Example 2 : List all the accounts which have not been accessed in the fourth
quarter of the financial year
Solution
SELECT DISTINCT FROM TRANS_MSTR WHERE TO_CHAR(DT,’MM’) NOT
BETWEEN 01 AND 04 ;
Explanation
The above select will retrieve all those records from the ACCT_MSTR table where the
value held in the DT field is not between 01 and 04(both values inclusive).This is done
using TO_CHAR() function which extracts the month value from the DT field and then
compares them using the not and the between operator.

2.7 SELECT STATEMENT WITH ORDER BY CLAUSE

 ORDER BY clause is similar to the GROUP BY clause. The ORDER BY clause
enables you to sort your data in either ascending or descending order.

Data Manipulation & Control / 29

 The ORDER BY clause consists of a list of column identifiers that the result is to
be sorted on, separated by columns. A column identifier may be either a column name
or a column number.

 It is possible to include more than one element in the ORDER BY clause. The
major sort key determines the overall order of the result table

 If the values of the major sort key are unique, there is no need for additional keys
to control the sort. However, if the values of the major sort key are not unique, there
may be multiple rows in the result table with the same value for the major sort key. In
this case it may be desirable to order rows with the same value for the major sort key
by some additional sort key. If a second element appears in the ORDER BY clause, it
is called a minor sort key.

 Example : Consider the worker database :

SQL> select *

 from worker

 order By F_NAME asc 0;

F_NAME STATUS GENDER BIRTHDATE

Ajay
Ashwini

Rahul
Smita

Regular
Regular

Summer
Regular

M
F

M
F

05 / 03 / 69
11 / 01 / 70

01 / 12 / 72
23 / 09 / 67

2.8 GROUP BY CLAUSE

 Another helpful clause is the group by clause. A group by clause arranges your
data rows into a group according to the columns you specify.

 A query that includes group by clause is called a grouped query because it
groups that data from the SELECT tables and generates single summary row for each
group.

 The columns named in the group by clause are called the grouping columns.

 When GROUP BY clause is used, each item in the SELECT list must be single-
valued per group.

 The select clause may contain only :

 Column names

 Aggregate functions

 Constants

 An expression involving combinations of the above.

 All column names in SELECT must appear in GROUP BY clause, unless the name
is used only in an aggregate function. The contrary is not true; there may be column
names in GROUP BY clause that do not appear in SELECT clause.

When the WHERE clause is used with GROUP BY the WHERE clause is applied first,
then groups are formed from the remaining rows that satisfy the search condition.

Example :

 Consider the worker table given below :
SQL> select *

 from worker

F_NAME

STATUS GENDER BIRTHDATE

 Oracle / 30

Ashwini

Rahul
Ajay
Smita

Regular

Summer
Regular
Regular

F

M
M
F

11 / 01 / 70

01 / 12 / 72
05 / 03 / 69
23 / 09 / 67

SQL> Select *
 from worker
 Group By status;

F_NAME STATUS GENDER BIRTHDATE

Ashwini
Ajay
Smita
Rahul

Regular
Regular
Regular
Summer

F
M
F
M

11 / 01 / 70
05 / 03 / 69
23 / 09 / 67
01 / 12 / 72

(2) To group by more than one column,
SQL> select *
 from worker

 Group By status, Gender;

F_NAME STATUS GENDER BIRTHDATE

Ashwini
Smita
Ajay

Rahul

Regular
Regular
Regular

Summer

F
F
M

M

11 / 01 / 70
23 / 09 / 67
05 / 03 / 69

01 / 12 / 72

 2.2, 2.3,2.4,2.5,2.6, 2.7 Check Your Progress
Fill in the blanks
1) DCL contain …………………&…………………commands.

2) Primry Key is the combination of…………………&………………….

3) After table command operates on …………………ends.

4) …………………cmd is used to save data in database.

5) The condition in group by clause is given by …………………clause.

2.9 HAVING CLAUSE

 The Having clause is similar to the where clause. The Having clause does for
aggregate data what where clause does for individual rows. The having clause is
another search condition. In this case, however, the search is based on each group of
grouped table.
 The difference between where clause and having clause is in the way the query is
processed.
 In a where clause, the search condition on the row is performed before rows are
grouped. In having clause, the groups are formed first and the search condition is
applied to the group.

Syntax is :
 select select_list

 from table_list
 [where condition [AND : OR] …… condition]
 [group by column 1, column 2, …… column N]

 [Having condition]

Data Manipulation & Control / 31

Example :

SQL> select *

 from worker
 Group By status, Gender
 Having Gender = 'F';

F_NAME STATUS GENDER BIRTHDATE
Ashwini
Smita

Regular
Regular

F
F

11 / 01 / 70
23 / 09 / 72

SQL> select *
 from worker
 where Birthdate < 11 / 01 / 70
 Group By status, Gender
 Having Gender = 'M';

F_NAME STATUS GENDER BIRTHDATE
Ajay Regular M 05 / 03 / 69

2.10 STRING OPERATION

(1) Searching for rows with the LIKE operator.
 The most commonly used operation on strings is pattern matching using the
operator like.
 We describe patterns using two special characters.

 • Percent (%) - The % character matches any substring
 • Underscore (_) : The-character matches any character.
 Patterns are case sensitive.

 To illustrate consider the following examples :
 1. "con%" matches with any string beginning with 'con'. For example : concurrent,

conference.

 2. "% nfi %" matches any string containing "nfi" as a substring.
 For example : confidence, confidential, confirm, confine.

 3. "- - -" matches any three characters.

 4. "- - - %" matches any string of at least three characters.
 Patterns are expressed in SQL using like operator.

Example Queries :

(1) Find the names of customers whose city name include "bad"
 SQL> select cust_name, cust_city

 from customer
 where cust_city like "%bad";
 Cust_name Cust_city

 Sachin Aurangabad
 Rahul Hyderabad
 Ajay Ahemadabad

 (2) Find the student's last name and id if the last name begins with "Desh"
 SQL> select student_id, last_name
 from student

 where last_name like "Desh %";
 student_id last_name

 101 Deshpande

 102 Deshmukh

 Oracle / 32

 For patterns to include the special characters (i.e. % & –), SQL allows the
specification of an escape character (\). The escape character is used immediately
before a special character to indicate that the special pattern character is to be treated
like a normal character. We define the escape character for a like comparison using
the escape keyword. To illustrate, consider the following patterns, which use a
backslash (\) as the escape character :
 (1) like ‘ab\%cd’ escape ‘\’

 matches all strings beginning with “ab%cd”.
 (2) like ‘ab\\cd’ escape ‘\’
 matches all strings beginning with ab\cd.

 (3) like ‘ab_cd’ escape ‘\’
 matches all strings beginning with ab_cd.

SQL allows us to search for mismatches instead of matches by using the not like
comparison operator.

2.11 DISTINCT ROWS

 SELECT statement has an optional Keyword distinct. This keyword follows select
and return only those rows which have distinct values for the specified columns. i.e. it
eliminates duplicate values.
 The keyword all allows to specify explicitly that the duplicates are not removed.
Example :

SQL> select distinct branch_name
 from loan;
 which eliminates duplicate values in the result.
SQL> select all branch_name
 from loan;

 it specifies that duplicates are not eliminated from result relation.
 Since duplicate retention is by default, we will not use all.

2.12 RENAME OPERAITON

 SQL provides a mechanism for renaming both relations and attributes. It uses as
clause and the syntax is :
 old_name as new_name

 The as clause can appear in both the select and from clauses.
Example :
 SQL> select distinct customer_name, borrower_loan_no.

 from borrower, loan
 where borrower·loan_no = loan·loan_no and
 branch name = 'ICICI';
This query can be rewritten using as clause as follows :
SQL> select customer_name, borrower_loan no as loan_id
 from borrower, loan
 where borrower loan_no = loan·loan_no and
 branch name = 'ICICI';
 where borrower_loan_no attribute is renamed as
 loan_id.;

 2.8 - 2.12 Check Your Progress
Fill in the blanks
1) A query that include group by clause is called…………………query.
2) Duplication of data avoid by …………………Keyword.

Data Manipulation & Control / 33

2.13 SET OPERATIONS

The SQL-92 operations UNION, INTERSECT and MINUS operate on relations and
correspond to the relational algebra operations , , – .

 Like the union, intersect and set difference in relational algebra, the relations
participating in the operations must be compatible, i.e. they must have the same set of
attributes.
 There are restrictions on the tables that can be combined using the set operations,
the most important one being that the two tables have to be union-compatible; that is
they have the same structure. This implies that the two tables must contain the same
number of columns, and that their corresponding columns have the same data types
and lengths. It is the user’s responsibility to ensure that data values in corresponding
columns come from the same domain.

 Union operator :

 The syntax for this set operator is :
 select_statement 1
 Union

 select_statement 2
 [order_by_clause]

 The variables are defined as :
 select_statement 1 and select_statement 2 are valid select statements
 order_by_clause is optional ORDER By clause that references the columns by
number rather than by name.

 The UNION operator combines the rows returned by the first SELECT statement
with rows returned by the second SELECT statement.
 Keep following things in mind when you use the UNION operator.

1. The two SELECT statement may not contain an ORDER By clause; however, you
can order the results of the union operation.

2. The number of columns retrieved by select_statement 1 must be equal to the
number of columns retrieved by select_statement 2.

3. The data types of the columns retrieved by select_statement 1 must match with
the data types of the columns retrieved by select_statement 2.

4. Here the optional order_by_clause differs from the usual ORDER By clause in a
select statement, because the columns used for ordering must be referenced by
number rather than by name. The reason that columns must be referenced by
number is that SQL does not require that the column names retrieved by
select_statement-1 be identical to the column names retrieved by select statement
- 2.

 Example :

 Find all customers having a loan, an account or both at the bank.
 SQL> select customer_name
 from depositor
 union

 select customer_name
 from borrower.

Union operation finds all customer having an account, loan or both at bank.
 Union operation eliminates duplicates.
Intersect Operator :

The Intersect operator returns the rows that are common between two sets of rows.
 The syntax for using the INTERSECT operator is :

 select_statement-1
 Intersect

 select_statement-2
 [Order_By_clause]

 The variables are defined as follows :

 Oracle / 34

 Select_statement 1 and select_statement 2 are valid SELECT statements.
 Order_By clause is an optional Order By clause that references the columns

by number rather than by name.
 Here are some requirements and considerations for using the INTERSECT
operator.
 1. The two select statement may not contain Order_By clause; however, you can

order the results of the entire Intersect operation.

 2. The number of columns retrieved by select_statement 1 must be equal to the
number of columns retrieved by select_statement 2.

 3. The data types of columns retrieved by select_statement 1 must match the
data types of the columns retrieved by select_statement 2.

 4. The optional Order_By_clause differs from the usual Order By clause in the
SELECT statement because the columns used for ordering must be
referenced by number rather than by name. The reason that the columns in
the Order_By_clause must be referenced by number rather than by name is
that SQL does not require that the column names retrieved by
select_statement 1 be identical to column names retrieved by select-statement
2. Therefore, you must indicate the columns to be used in ordering results by
their position in select list.

 Example :

Find all customers who have both an account and loan at the bank.
 SQL> (select customer_name
 from depositor)

 INTERSECT
 (select customer_name
 from borrower)

 The intersect operator automatically eliminates duplicates. If we want to retain all
duplicates, we must write INTERSECT all in place of INTERSECT.
 The Minus Operator (Except operator) :

 The syntax for using Minus operator is :
 select_statement 1
 Minus

 select_statement 2
 [order by clause]

 The variables defined are :
 select_statement 1 and select_statement 2 are
 valid SELECT statements.

 Order_By_clause is an ORDER By
Clause that references columns by numbers rather than by name.

 The requirements and considerations for using the MINUS operator are essentially
the same as those for the INTERSECT and UNION operator.

 Example : Find all customers who have an account but no loan at the bank.

 SQL> Select customer_name

 from depositor
 MINUS
 Select customer_name

 from borrower

2.14 AGGREGATE FUNCTIONS

 Aggregate functions are the functions that take a collection of values as input and
return a single value.

 SQL offers five built-in aggregate functions.

Data Manipulation & Control / 35

 1. Average : AVG
 2. Minimum : MIN

 3. Maximum : MAX
 4. Total : SUM
 5. Count : COUNT

 These functions operate on a single column of a table and return a single value.
 COUNT, MIN and MAX apply to both numeric and non-numeric fields, but SUM
and AVG may be used on numeric fields only.

 Apart from COUNT(*), each function eliminates nulls first and operates only on the
remaining non-null values.
 If we want to eliminate duplicates before the function is applied, we use the
keyword DISTINCT before the column name in the function.
 The keyword ALL can be used if we do not want to eliminate the duplicates. ALL is
assumed if nothing is specified.
 DISTINCT has no effect on MIN and MAX functions. It may effect on the result of
SUM or AVG.
 It is important to note that an aggregate function can be used only in SELECT list
and in the HAVING clause. It is incorrect to use it elsewhere.

avg function :
 avg function computes the column's average value.
 The input to avg must be a collection of numbers.
Example : Find the average balance
 SQL> select avg (balance)
 from account;
 This aggregate function can also be applied to a group of set of tuples using
group by clause.

Example : Find the average balance at each branch

 SQL> select branch_name, avg (balance)

 from account

 group by branch_name;

min and max functions :

 min and max return the minimum and maximum values for the specified
column.

Example :

 Find the minimum and maximum values of balance.

 Select max (balance) min (balance) from account.

sum function :

 sum function computes the column's total value. Input to this function must be
a collection of numbers.

Count function :

 count function counts the number of rows. There are two forms of count.

 count (*) - which counts all the rows in a table that satisfy any specified criteria.

 count (column_name) - which counts all rows in a table that have a non-null
value for column_name and satisfy the specified criteria.

NULL Values :

 SQL allows the use of null values to indicate absence of information about the
value of an attribute.

 We can use the special keyword NULL in a predicate to test for a null value.

Example :

 SQL> select loan_no

 from loan

 where amount is NULL;

 The predicate NOT NULL tests for the absence of null values.

 Oracle / 36

 The use of a NULL value in arithmetic and comparison operations causes several
complications. The result of an arithmetic expressions is NULL if any of the input
values is NULL. The result of any comparison involving a NULL value can be thought
of as being false.

 SQL_92 treats the results of such comparisons as unknown, which is neither true
nor false. It also allows us to test whether the result of a comparison is unknown.

 In general, aggregate functions treat nulls using the following rule :

 All aggregate functions except count (*) ignore NULL values in their input
collection.

 2.15 NESTED SUB QUERIES

 SQL provides a mechanism for the nesting of sub queries. A sub query is a select-
from-where expression that is nested within another query. A common use of sub
queries is to perform tests for :

1. Set membership
2. Set comparison
3. Set cardinality.

1. Set Membership : (in connective)
 The in connective tests for the set membership, where the set is a collection of
values produced by a select clause.
 The not in connective tests for the absence of set membership.

 As an illustration consider the following query :

(1) "Find all customers who have both a loan and an account at the bank".
 Note : The result of this query can be obtained using INTERSECT operator.

 SQL> select customer_name

 from borrower
 where customer_name in (select customer_name from depositor);

 i.e. find all customers having an account who are members of the set of
borrowers from the bank.

(2) Find all customers who have both an account and loan at the ICICI branch.

 SQL> select customer_name

 from borrower, loan
 where borrower loan no = loan · loan_no and
 branch_name = 'ICICI' and

 (branch_name, customer_name) in

 (select branch_name, customer_name
 from depositor, account

 where depositor·account_no = account·account_no);
Example query for not in connective :

 (1) Find all customers who do have a loan at the bank, but do not have an
account at the bank.

 SQL> select customer_name
 from borrower
 where customer_name not in

 (select customer_name
 from depositor);

The in and not in operators can also be used on enumerated sets.
Example :

 Find the customer names who have a loan at a bank and whose names are
neither 'Sachin' nor 'Ajay'.

 SQL> select customer_name
 from borrower

Data Manipulation & Control / 37

 where customer_name not in (‘Sachin’, ‘Ajay’);

2. Set Comparison :

 SQL allows following set comparison operators :
 < some : Less than at least one

 <= some : Less than or equal to at least one
 > some : Greater than at least one
 >= some : Greater than or equal to at least one

 = some : Equal to at least one
 < > some : Not equal to at least one.

Example Query :

 "Find the names of all branches that have assets greater than those of at least
one branch located in Bombay"

 SQL> select branch_name

 from branch
 where assets > some (select assets
 from branch

 where branch_city = ‘Bombay’)
 Sub query(select assets
 from branch

 where branch city = Bombay)
generates the set of all asset values for all branches in Bombay. The > some
comparison in where clause of the outer select is true if the asset value of the tuple is
greater than at least one member of the set of all asset values for branches in
Bombay.

SQL also supports following set of comparison operators :
 < all : less than all
 <= all : less than or equal to all

 > all : greater than all
 >= all : greater than or equal to all
 = all : equal to all

 < > all : not equal to all
Example Query :

Find the branch that has the highest average balance.

 SQL> select branch_name from account
group by branch_name having avg (balance) >= all (select avg (balance) from
account group by branch_name);

Test for Empty Relations :

SQL includes a feature for testing whether a sub query has any tuples in its
results.

The exists construct returns the value true if the argument query is non-empty.

Similarly, we can test the non-existence of tuples in a sub-query by using the not-
exists construct.
 Example Query using exists construct :

 "Find all customers who have both an account and a loan at the bank."

SQL> select customer_name
 from borrower

 where exists (select *
 from depositor
 where depositor customer_name =

 borrower·customer_name);
Example Query using Not exists construct :

 Find all customers who have an account at all branches located in Bombay.

 Oracle / 38

 Note : For each customer we need to see whether the set of all branches at which
that customer has an account contains the set of all branches in Bombay.

 SQL> select distinct customer_name
 from depositor as S
 where not exists (select branch_name

 from branch
 where branch_city = 'Bombay')
 minus

 (select R·branch_name
 from depositor as T, account as R
 where,

T.account_number= R·account_number
 and
 S·customer_name = T·customer_name)

 where,
 (select branch_name
 from branch

 where branch_city = ‘Bombay’)
Finds all the branches in Bombay.
The sub query

 (select R·branch_name
 from depositor as T, account as R
 where T·account_number = R·account_number

 and S·customer_name = T·customer_name)
Finds all branches at which customer S·customer_name has an account.

 Thus, the outer select takes each customer and tests whether the set of all
branches at which the customer has an account contains the set of all branches
located in Bombay.
Test for the Absence of Duplicate Tuples :

 SQL includes a feature for testing whether a sub query has any duplicate tuples in
its result.
 The unique construct returns the value true if the argument sub query contains no
duplicate tuples.

Example Query :

 Find all customers who have only one account at ICICI branch.
 SQL > select T·customer_name
 from depositor as T

 where unique (select R·customer_name
 from account, depositor as R
 where T·customer_name

 = R·customer_name and
 R·account_no = account·account_number
 and

 account·branch_name = ‘ICICI’);
 We can test for the existence of duplicates in a sub-query by using the not unique
construct.
Example Query :

 Find all customers who have at least two accounts at the ICICI branch.
 SQL> select distinct T·customer_name
 from depositor T
 where not unique (select R·customer_name

 from account, depositor as R
 where T·customer_name = R·customer_name
 and

Data Manipulation & Control / 39

 R·account_number = account·account_number
 and account·branch_name = ‘ICICI’);

 2.16 EMBEDDED SQL

 Need of embedded SQL : SQL provides a powerful declarative query language.
Writing queries in SQL is typically much easier than is coding the same queries in a
general-purpose programming language. However, access to a database from a
general purpose language is required for at least two reasons :

(1) Not all queries can be expressed in SQL since, SQL does not provide the full
expressive power of a general purpose language. That is there exist queries that can
be expressed in a language such as Pascal, C, Cobol, or Fortran that cannot be
expressed in SQL. To write such queries, we can embed SQL within a more powerful
language.
 SQL is designed such that queries written in it can be optimized automatically and
executed efficiently, and providing the full power of a programming language makes
automatic optimization exceedingly difficult.

(2) Non-declarative actions such as printing a report, interacting with a user, or
sending the results of a query to a graphical user interface, cannot be done from within
SQL. Applications typically have several components and querying or updating data is
only one component, other components are written in general purpose programming
languages. For an integrated application, the programs written in the programming
language must be able to access the database.

 The SQL standard defines embedding of SQL in a variety of programming
languages, such as Pascal, PL/I, C, and control.
 A language in which SQL queries are embedded is referred to as a host language,
and the SQL structures permitted in the host language constitute embedded SQL.

 Programs written in host language can use the embedded SQL syntax to access
and update data stored in a database. This form of SQL extends the programmer's
ability to manipulate the database even further.

Working of Embedded SQL :

 In embedded SQL all query processing is performed by the database system. The
result of query is then made available to the program one tuple at a time. An
embedded SQL program must be processed by a special preprocessor prior to
compilation. Embedded SQL requests are replaced with host language declarations
and procedure calls that allow run-time execution of the database accesses. Then the
resulting program is compiled by the host language compiler.
Syntax of Embedded SQL :

 To identify embedded SQL request to the preprocessor we use EXEC SQL
statement.
 The format is :
 EXEC SQL < embedded SQL statement > END EXEC.

 The exact syntax for embedded SQL requests depends on the language in which
SQL is embedded. For example, a semi-colon is used instead of END-EXEC when
SQL is embedded in C or Pascal.
 We place the statement SQL INCLUDE in the program to identify the place where
preprocessor should insert the special variables used for communication between the
program and database system.
 Variables of the host language can be used within embedded SQL statements, but
they must be preceded by a colon (:) to distinguish them from SQL variables.
 To write a query, we use declare cursor statement.

Example :

 Oracle / 40

 Consider the banking schema, we have host language and variable amount. The
query is to find the names and cities of residence of customers who have more than
amount dollars in any account.

 EXEC SQL
 declare c cursor for
 select customer_name, customer_city

 from depositor, customer
 where depositor·customer_name = customer.customer_name
 and

 depositor·balance > : amount
 END EXEC.

 The variable c in the example is called cursor for the query. This variable is used
to identify the query in open and fetch statements.
 Open statement : Open statement causes the query to be evaluated.

 The open statement for the above given query is :

 EXEC SQL open c END-EXEC
 It causes the database system to evaluate the query and stores results within a
temporary relation. If SQL query results in an error, the database system stores an
error diagnostic in the SQL communication area (SQLCA) variables, whose
declarations are inserted by SQL INCLUDE statement.
 Fetch statement : A fetch statement causes the values of one tuple be placed in
host language variables. A series of fetch statements is executed to make the results
available to program. The fetch statement requires one host-language variable for
each attribute of the result relation.

 For our example, consider that customer_name is stored in cn and customer city in
cc.
 EXEC SQL fetch c into : cn : cc END EXEC :
 One fetch statement return only one tuple. To obtain all tuples of the result, the
program must contain a loop to iterate overall tuples. Embedded SQL assists the
programmer in managing this iteration. In a relation, tuples of the result of a query are
in some fixed physical order. When an open statement is executed, the cursor is set to
point to the first tuple of result. When fetch is executed, the cursor is updated to point
to the next tuple of the result. A variable in SQLCA is set to indicate that no further
tuples remain to be processed. Thus we can use while loop to process each of the
tuples.

Close statement : A close statement must be used to tell the database system to
delete the temporary relation that held the result of the query.

 For our example, the close statement is
EXEC SQL close c END EXEC

 Embedded SQL expression for database modification can be given as :

 EXEC SQL < any valid update, insert
 or delete > END EXEC

 Host language variables, preceded by a colon, may appear in SQL database
modification expression. If an error arises in the execution of the statement, a
diagnostic is set in the SQLCA.

2.13-2.16 Check Your Progress
Fill in the blanks

1) …………………Functions is used to calculate the average.

2) Query under Query is called as………………….

3) …………………statements causes the query to be evaluated.

4) ………………… allows program to construct & submit SQL Querries at run time.

Data Manipulation & Control / 41

2.17 DYNAMIC SQL

 Dynamic SQL component of SQL - 92 allows programs to construct and submit
SQL queries at run-time. Using dynamic SQL programs can create SQL queries as
string s at run time and can execute them immediately or prepare them for subsequent
use. Preparing a dynamic SQL statement compiles it, and subsequent uses of the
prepared statement use the compiled version.
 Example :

 char * sqlprog = "Update account set
 balance = balance * 1.05

 where account_no = ?"
 EXEC SQL prepare dynprog from : sqlprog;
 char account -[10] = "A = 101";
 EXEC SQL execute dynprog using : account;

 The dynamic SQL program contains a ? which is a place holder for a value that is
provided when the SQL program is executed.
EXAMPLE QUERIES

(I) Consider the following database

 Employee (emp_no, name, skill, pay_rate)
 Position (posting_no., skill)
 Duty_allocation (posting_no., emp_no, day, shift)

 Find SQL queries for the following :

(1) Get complete details from Duty_allocation
 select *
 from Duty_allocation;
(2) Get duty allocation details for Emp_no 123461 for the month of April

1986.
 select posting_no., shift, day
 from Duty_allocation
 where emp_no = 123461 and
 Day ;
(3) Find the shift details for employee 'XYZ' :
 select posting_no., shift, day
 from Duty_allocation, Employee
 where Duty allocation.emp_no. = Employee.emp_no and
 Name = 'XYZ';
(4) Get employees whose rate of pay is more than or equal to the rate of

pay of employee 'XYZ'
 select S.name, S.pay_rate
 from Employee as S, Employee as T
 where S.pay_rate > T.pay_rate
 and T.name = 'XYZ';
(5) Compile all pairs of posting_nos requiring the same skill
 select S.posting_no., T.posting_no.
 from Position S, Position T
 where S.skill = T.skill
 and S.posting_no. < T.posting_no.;
(6) Find the employees eligible to fill a position.
 select Employee.emp_no., position.posting_no., position.skill
 from Employee, Position
 where employee·skill = position.skill;
(7) Get the names and pay rates of employees with emp_no less than

123460 whose rate of pay is more than the rate of pay of at least one
employee with emp_no greater than or equal to 123460.

 select name, pay_rate

 Oracle / 42

 from Employee
 where emp_no < 123460 and
 pay_rate > some
 (select pay_rate
 from Employee
 where emp_no
(8) Get employees who are working either on the date 19860419 or

19860420.
 select emp_no
 from Duty_allocation
 where Day in (19860419, 19860420);
 OR
 select emp_no
 from Duty_allocation
 where Day = 19860419 or Day = 19860420.
(9) Find the names of all employees who are assigned to all positions

that require a Chef’s skill.
 select S.Name
 from Employee S
 where
 (select posting_no
 from Duty_allocation D
 where S.emp_no = D.emp_no)
 contains
 (select P.posting_no
 from position P
 where P.skill = 'Chef');
(10) Find the employees with the lowest pay rate
 select emp_no, Name, Pay_rate
 from Employee
 where pay_rate
 (select pay_rate
 from Employee)
(11) Get the names of Chef's paid at the minimum Pay-Rate.
 select name
 from Employee
 where skill = 'Chef' and
 pay_Rate
 (select pay_rate
 from Employee
 where skill = 'Chef')
(12) Find the names and the rate of pay of all employees who are allocated

a duty.
 select name, pay_rate
 from Employee
 where EXISTS
 (select *
 from Duty_allocation
 where Employee.emp_no = Duty_allocation.emp_no)
(13) Find the names and the rate of pay of all employees who are not

allocated a duty.
 select name, pay_rate
 from Employee
 where NOT EXISTS
 (select *

 from Duty_allocation
 where Employee.emp_no
 = Duty_allocation.emp_no)

Data Manipulation & Control / 43

(14) Get employees who are waiters or work at Posting-no 321
 (select emp_no
 from Employee
 where skill = 'waiter')
 Union
 (select emp_no
 from Duty_allocation
 where posting_no = 321)
(15) Get employee numbers of persons who work at posting-no 321 but

don't have the skill of waiter.
 (select emp_no
 from Duty_allocation
 where posting_no = 321)
 minus
 (select emp_no
 from Employee
 where skill 'waiter')
(16) Get a list of employees not assigned a duty
 (select emp_no
 from Employee)
 minus
 (select emp_no
 from Duty_allocation)
(17) Get a list of names of employees with the skill of Chef who are assigned a

duty
 select Name
 from Employee
 where emp_no in
 ((select emp_no
 from Employee
 where skill = 'Chef')
 intersect
 (select emp_no
 from Duty_allocation));
(18) Get a count of different employees on each shift
 select shift, count (distinct emp_no)
 from Duty_allocation
 group by shift;
(19) Get the employee numbers of all employees working on at least two

dates.
 select emp_no
 from Duty_allocation
 group by emp_no
 having (count;*) > 1

 (II) Consider the given database :

 Project (project_id, proj_name, chief_arch)
 Employee (Emp_id, Emp_name)

 Assigned_To (Project_id, emp_id)
 Find the SQL queries for the following statements :
(1) Get employee number of employees working on project C353

 select emp_id
 from Assigned_To
 where projectid = 'C353';
(2) Get details of employees working on project C 353.

 Oracle / 44

 select A.empid, emp_name
 from A.Assigned_To A, Employee

 where project_id = 'C353' ;
(3) Obtain details of employees working on Database project

 select Emp_name, A. Emp_id

 from A. Assigned_To A, Employee
 where project_id in (select P. project_id
 from P. project

 where P. project_name = 'Database');
(4) Get details of employees working on both C353 and C354.

 (select Emp_name, A. emp_id

 from Assigned_to A, Employee
 where A.Project_id = C354)
 intersect

 (select emp_name, A.empid
 from A.Assigned_To A, Employee
 where project_id = 'C354');
(5) Get employee numbers of employees who do not work on project C

453

 (select emp_id

 from Employee)
 minus
 (select emp_id

 from assigned_to
 where project_id = 'C453');
(6) Get the employee numbers of employees who work on all projects.

 select emp_id
 from assigned to
 where project_id = all

 (select project_id
 from project);
(7) Get employee numbers of employees who work on at least all those

projects that employee 107 works on

 ((select emp_id
 from Assigned_To
 where project_id = all

 (select project_id
 from Assigned_To
 where emp_id = 107))

 minus 107);
(8) Get employee numbers who work on at least one project that

employee 107 works on.

 ((select emp_id
 from Assigned_To
 where project_id in

 (select project_id
 from Assigned to
 where emp_id = 107)

 minus 107);

(III) Consider the employee database :

 employee (employee_name, street, city)
 works (employee_name, company_name, salary)

Data Manipulation & Control / 45

 company (company_name, city)
 manages (employee_name, manager_name).

 Give an expression in SQL for each of the following :
(1) Find the names of all employees who work for FBC.

 select employee_name

 from works
 where company_name = 'FBC' ;
(2) Find the names and cities of all employees who work for FBC.

 select employee·employee_name, city
 from works, employee
 where employee·employee_name = works · employee_name and
company_name = 'FBC';
(3) Find the names, street address, and cities of residence of all

employees who work for FBC and earn more than $ 10,000.

 select employee·employee_name, street, city

 from works employee
 where employee·employee_name = works·employee_name and
 company_name ='FBC' and salary > 10000;

(4) Find all employees in the database who live in the same cities as the

companies for which they work.
 select w.employee_name
 from works w, emple, comp c
 where e.emp_name = w.emp_name and
 C.company_name . w. company_name and e.city = city;
(5) Find all employees in the database who live in the same cities and on

the same street as do their managers.
 select E.employee_name
 from employee E.employee T, manages

where E.employee_name= manages.employee_name
 and E.street = T.street and E.city = T.city and
 T.employee_name = manages.manager_name;

(6) Find all employees in the database who do not work for FBC.
 (select employee_name
 from employee)
 minus
 (select employee_name
 from works
 where company_name = 'FBC');
(7) Find all employees in the database who earn more than every

employee of small bank corporation
 select employee_name
 from works
 where salary > (select max (salary)
 from works
 where company_name = 'FBC');
(8) Find all employees who earn more than the average salary of all

employees of their company.
 select T.employee_name
 from works T.
 where salary > (select avg (S.salary)
 from works S.
 where T.company_name = S.company_name);

 Oracle / 46

(9) Find the company that has the smallest payroll
 SQL> create view payroll (compname, smallpay)
 as
 select company_name, min (salary)
 from works
 group by company name;
 SQL> select company name
 from payroll
 where small_pay = (select min (small_pay) from
 payroll);
(10) Find those companies whose employees earn a higher salary, on

average than the average salary at FBC
 SQL> create view avg_salary (comp_name, av_sal)
 as

 select company_name, avg (salary)
 from works
 group by company_name

 SQL> select T.comp_name
 from avg_salary T. avg_salary S.
 where S.company_name = 'FBC'

 and T.av_sal > S.av_sal;
(11) Find the company that has must employees

 SQL> create view no_emp (compname, no_employee)

 as
 select company_name, count (employee_name)
 from works

 group by company_name;
 SQL> select company_name
 from no_emp

 where no_employee = (select max no_emplyee)
 from no_emp)

2.18 SUMMARY

SQL is devided into three groups of command DDL (Data definition
language),DML(Data manipulation language) DCL (Data Control language).
DDL related with the structure of the objects. It has create table, alter table, drop
table, create view & create index commands. DML is related with the data in the
table

2.19 CHECK YOUR PROGRESS - ANSWERS

2.2-2.7

1)Grant & Revoke
 2) Unique & Not Null

3) DDL

4)Commit
 5) Having

 2.8-2.12
1)Grouped
2)Distinct or Unique

Data Manipulation & Control / 47

 2.13-2.16
1) Avg ()

2) Sub Query/Nested Query
3)Open
4) Dynamic SQL

2.20 QUESTIONS FOR SELF-STUDY
Q.1 Define the following terms :
 (i) DDL
 (ii) DML

Q.2 What are the data types in SQL ?
Q.3 Give syntax of following SQL commands :
 (i) CREATE

 (ii) ALTER
 (iii) DROP
 (iv) INSERT

 (v) DELETE
 (vi) UPDATE
 (vii) SELECT

Q.4 What are subdivisions of SQL ?
Q.5 What are the set operations of SQL-92 ? Explain with examples.
Q.6 Write a note on :

 (i) Nested sub queries
 (ii) Views in SQL
 (iii) Indexes in SQL

 (iv) DCL
 (v) Embedded SQL
 (vi) Dynamic SQL.

Q.7 Consider the insurance database :
 Person(driver_id, name, address)
 Car(license, model, year)

 Accident(report_no, data, location)
 Owns(driver_id, license)
 Participated(driver_id, report_no, damage_amount)

 Give an expression in SQL for each of the following :
1. Find the total number of people who owned cars that were involved in

accident in 1989.
2. Find the total number of accidents in which car belonging to John Smith is

involved
3. Add a new accident to the database
4. Delete the Mazda belonging to John Smith.

Q.8 Consider the schema for Presidential database
President(pres_id, last_name, first_name, political_party, state_from)
Administration(start_data, pre_id, end_data, VP_last_name, VP_first_name)

 State(state_name, data_admitted, area, population, capital_city)
 Write SQL queries.
Q.9 Consider the relation schemas

 customer(customer_name, customer_street, customer_city) account
(branch_name, account_no, balance)

 Depositor(customer_name, account_no)
 Give an expression in SQL for following query :

 Find the average balance for each customer who lives in Harison and has at
least three accounts.

 Oracle / 48

Q.10 Consider the following tables :
 Frequents(visitor, stall)

 Servers(stall, icecream)
 Likes(visitor, icecream)
 Write the following queries in SQL.

1. Print the stalls that serve the ice cream that visitor john likes.
2. Print the visitors that frequently visit at least one stall that serves the ice cream

they like.

2.21 SUGGESTED READINGS

 Teach Yourself SQL in 21 Days - By Ryan K. Stephens Ronald R Plew

 Using Oracle Application - By Jim Crum

Data Manipulation & Control / 49

NOTES

 Oracle / 50

NOTES

Query Multiple Tables / 51

Chapter 3

QUERY MULTIPLE TABLES

3.0 Objectives

3.1 Introduction

3.2 Joins

 3.2.1 Equi-Join.

 3.2.2 Non-Equi-Join.

 3.2.3 Outer Join versus Inner Join

 3.2.4 Joining Table to Itself.

3.3 Procedures and Functions

3.4 Creating a Procedure

3.5 Executing a Procedure

3.6 Deleting a Procedure

3.7 Functions

 3.7.1 Aggregate Functions

 3.7.2 Date & Time Function

 3.7.3 Arithmatic Functions

 3.7.4 Character Functions

 3.7.5 Conversion Functions

 3.7.6 Miscelleneous Functions

3.8 Summary

3.9 Check Your Progress - Answers

3.10 Questions for Self – Study

3.11 Suggested Readings

3.0 OBJECTIVES

 After reading this chapter you will able to

explain how to Creating procedure

explain how to Executing procedure

explain how to Deleting procedure

describe Function

3.1 INTRODUCTION

Today you will learn about joins. This information will enable you to gather and

manipulate data across several tables. By the end of the day, you will understand and
be able to do the following :

 Perform an outer join
 Perform a left join

 Perform a right join
 Perform an equi-join
 Perform a non-equi-join

 Join a table to itself.

 Oracle / 52

3.2 JOINS

One of the most powerful features of SQL is its capability to gather and manipulate
data from across several tables. Without this feature you would have to store all the
data elements necessary for each application in one table. Without common tables you
would need to store the same data in several tables. Imagine having to redesign,
rebuild, and repopulate your tables and databases every time your user needed a
query with a new piece of information. The JOIN statement of SQL enables you to
design smaller, more specific tables that are easier to maintain than larger tables.

Multiple Tables in a Single SELECT Statement

Like Dorothy in The Wizard of Oz, you have had the power to join tables since Day
2, "Introduction to the Query : The SELECT Statement," when you learned about
SELECT and FROM. Unlike Dorothy, you do not have to click you heels together three
times to perform a join. Use the following two tables, named, cleverly enough, TABLE1
and TABLE2.

INPUT :

SELECT *
FROM TABLE1

OUTPUT :

ROW REMARKS
======= =======
row 1 Table 1

row 2 Table 1
row 3 Table 1
row 4 Table 1

row 5 Table 1
row 6 Table 1

INPUT :
SELECT *
FROM TABLE2

OUTPUT :

ROW REMARKS

========= ========
row 1 table 2
row 2 table 2

row 3 table 2
row 4 table 2
row 5 table 2

row 6 table 2

To join these two tables, type this :

INPUT :
SELECT *

FROM TABLE1, TABLE2
OUTPUT :

Query Multiple Tables / 53

ROW REMARKS ROW REMARKS
========= ========== ======== ==========

row 1 Table 1 row 1 table 2
row 1 Table 1 row 2 table 2
row 1 Table 1 row 3 table 2

row 1 Table 1 row 4 table 2
row 1 Table 1 row 5 table 2
row 1 Table 1 row 6 table 2

row 2 Table 1 row 1 table 2
row 2 Table 1 row 2 table 2
row 2 Table 1 row 3 table 2

row 2 Table 1 row 4 table 2
row 2 Table 1 row 5 table 2
row 2 Table 1 row 6 table 2

row 3 Table 1 row 1 table 2
row 3 Table 1 row 2 table 2
row 3 Table 1 row 3 table 2

row 3 Table 1 row 4 table 2
row 3 Table 1 row 5 table 2
row 3 Table 1 row 6 table 2

row 4 Table 1 row 1 table 2
row 4 Table 1 row 2 table 2
row 4 Table 1 row 3 table 2

row 4 Table 1 row 4 table 2
row 4 Table 1 row 5 table 2
row 4 Table 1 row 6 table 2

row 5 Table 1 row 1 table 2
row 5 Table 1 row 2 table 2
row 5 Table 1 row 3 table 2

row 5 Table 1 row 4 table 2
row 5 Table 1 row 5 table 2
row 5 Table 1 row 6 table 2

row 6 Table 1 row 1 table 2
row 6 Table 1 row 2 table 2
row 6 Table 1 row 3 table 2

row 6 Table 1 row 4 table 2
row 6 Table 1 row 5 table 2
row 6 Table 1 row 6 table 2

Thirty-six rows! Where did they come from ? And what kind of join is this ?
A close examination of the result of the first join shows that each row from TABLE1

was added to each row from TABLE2. An extract from this join shows what happened :

OUTPUT :

ROW REMARKS ROW REMARKS
===== ========== ======= ========
row 1 Table 1 row 1 table 2

row 1 Table 1 row 2 table 2
row 1 Table 1 row 3 table 2
row 1 Table 1 row 4 table 2

row 1 Table 1 row 5 table 2
row 1 Table 1 row 6 table 2

 Oracle / 54

Notice how each row in TABLE2 was combined with row 1 in TABLE1.
Congratulations! You have performed your first join. But what kind of join? An inner
join? an outer join? or what? Well, actually this type of join is called a cross-join. A
cross-join is not normally as useful as the other joins covered today, but this join does
illustrate the basic combining property of all joins : Joins bring tables together.

Suppose you sold parts to bike shops for a living. When you designed your
database, you built one big table with all the pertinent columns. Every time you had a
new requirement, you added a new column or started a new table with all the old data
plus the new data required to create a specific query. Eventually, your database would
collapse from its own weight-not a pretty sight. An alternative design, based on a
relational model, would have you put all related data into one table. Here's how your
customer table would look :

INPUT :
SELECT *
FROM CUSTOMER
OUTPUT :

NAME ADDRESS STATE ZIP PHONE REMARKS
======== ========= ====== ==== ======= ========

TRUE WHEEL 55O HUSKER NE 58702 555-4545 NONE
BIKE SPEC CPT SHRIVE LA 45678 555-1234 NONE
LE SHOPPE HOMETOWN KS 54678 555-1278 NONE

AAA BIKE 10 OLDTOWN NE 56784 555-3421 JOHN-MGR
JACKS BIKE 24 EGLIN FL 34567 555-2314 NONE

Finding the Correct Column

When you joined TABLE1 and TABLE2, you used SELECT *, which returned all
the columns in both tables. In joining ORDERS to PART, the SELECT statement is a
bit more complicated :

SELECT O.ORDEREDON, O.NAME, O.PARTNUM,
P.PARTNUM, P.DESCRIPTION

SQL is smart enough to know that ORDEREDON and NAME exist only in
ORDERS and that DESCRIPTION exists only in PART, but what about PARTNUM,
which exists in both? If you have a column that has the same name in two tables, you
must use an alias in your SELECT clause to specify which column you want to display.
A common technique is to assign a single character to each table, as you did in the
FROM clause :

FROM ORDERS O, PART P
You use that character with each column name, as you did in the preceding

SELECT clause. The SELECT clause could also be written like this :

SELECT ORDEREDON, NAME, O.PARTNUM, P.PARTNUM, DESCRIPTION
But remember, someday you might have to come back and maintain this query. It

does not hurt to make it more readable. Now back to the missing statement.

3.2.1 Equi-Joins

An extract from the PART/ORDERS join provides a clue as to what is missing :

30-JUN-1996 TRUE WHEEL 42 54 PEDALS

30-JUN-1996 BIKE SPEC 54 54 PEDALS

30-MAY-1996 BIKE SPEC 10 54 PEDALS

Notice the PARTNUM fields that are common to both tables. What if you wrote the
following ?

INPUT :
SELECT O.ORDEREDON, O.NAME, O.PARTNUM,
P.PARTNUM, P.DESCRIPTION

Query Multiple Tables / 55

FROM ORDERS O, PART P
WHERE O.PARTNUM = P.PARTNUM

OUTPUT :

 ORDEREDON NAME PARTNUM PARTNUM DESCRIPTION

=========== ========= ======== ======= ===========
1-JUN-1996 AAA BIKE 10 10 TANDEM
30-MAY-1996 BIKE SPEC 10 10 TANDEM

2-SEP-1996 TRUE WHEEL 10 10 TANDEM
1-JUN-1996 LE SHOPPE 10 10 TANDEM
30-MAY-1996 BIKE SPEC 23 23 MOUNTAIN BIKE

15-MAY-1996 TRUE WHEEL 23 23 MOUNTAIN BIKE
30-JUN-1996 TRUE WHEEL 42 42 SEATS
1-JUL-1996 AAA BIKE 46 46 TIRES

30-JUN-1996 BIKE SPEC 54 54 PEDALS
1-JUL-1996 AAA BIKE 76 76 ROAD BIKE
17-JAN-1996 BIKE SPEC 76 76 ROAD BIKE

19-MAY-1996 TRUE WHEEL 76 76 ROAD BIKE
11-JUL-1996 JACKS BIKE 76 76 ROAD BIKE
17-JAN-1996 LE SHOPPE 76 76 ROADBIKE

Using the column PARTNUM that exists in both of the preceding tables, you have

just combined the information you had stored in the ORDERS table with information
from the PART table to show a description of the parts the bike shops have ordered
from you. The join that was used is called an equi-join because the goal is to match
the values of a column in one table to the corresponding values in the second table.

You can further qualify this query by adding more conditions in the WHERE
clause. For example:

INPUT/OUTPUT :
SELECT O.ORDEREDON, O.NAME, O.PARTNUM,

P.PARTNUM, P.DESCRIPTION
FROM ORDERS O, PART P
WHERE O.PARTNUM = P.PARTNUM

AND O.PARTNUM = 76

ORDEREDON NAME PARTNUM PARTNUM DESCRIPTION

=========== ======= ======== ==================
1-JUL-1996 AAA BIKE 76 76 ROAD BIKE
17-JAN-1996 BIKE SPEC 76 76 ROAD BIKE

19-MAY-1996 RUE WHEEL 76 76 ROAD BIKE
11-JUL-1996 JACKS BIKE 76 76 ROAD BIKE
17-JAN-1996 LE SHOPPE 76 76 ROAD BIKE

The number 76 is not very descriptive, and you would not want your sales people

to have to memorize a part number. (We have had the misfortune to see many data
information systems in the field that require the end user to know some obscure code
for something that had a perfectly good name. Please don't write one of those!) Here's
another way to write the query :

INPUT/OUTPUT :

SELECT O.ORDEREDON, O.NAME, O.PARTNUM,
P.PARTNUM, P.DESCRIPTION
FROM ORDERS O, PART P

 Oracle / 56

WHERE O.PARTNUM = P.PARTNUM
AND P.DESCRIPTION = 'ROAD BIKE'

ORDEREDON NAME PARTNUM PARTNUM DESCRIPTION
=========== ========= =========== ==================

1-JUL-1996 AAA BIKE 76 76 ROAD BIKE
17-JAN-1996 BIKE SPEC 76 76 ROAD BIKE
19-MAY-1996 TRUE WHEEL 76 76 ROAD BIKE

11-JUL-1996 JACKS BIKE 76 76 ROAD BIKE
17-JAN-1996 LE SHOPPE 76 76 ROAD BIKE

Along the same line, take a look at two more tables to see how they can be joined.
In this example the employee_id column should obviously be unique. You could have
employees with the same name, they could work in the same department, and earn
the same salary. However, each employee would have his or her own employee_id.
To join these two tables, you would use the employee_id column.

EMPLOYEE_TABLE EMPLOYEE_PAY_TABLE

employee_id employee_id

last_name salary

first_name department

middle_name supervisor

 marital_status

INPUT :

SELECT E.EMPLOYEE_ID, E.LAST_NAME, EP.SALARY
FROM EMPLOYEE_TBL E,
 EMPLOYEE_PAY_TBL EP

WHERE E.EMPLOYEE_ID = EP.EMPLOYEE_ID
 AND E.LAST_NAME = 'SMITH';

OUTPUT :

E.EMPLOYEE_ID E.LAST_NAME EP.SALARY

============= =========== =========
 13245 SMITH 35000.00

Back to the original tables. Now you are ready to use all this information about
joins to do something really useful: finding out how much money you have made from
selling road bikes :

INPUT/OUTPUT :
SELECT SUM(O.QUANTITY * P.PRICE) TOTAL
FROM ORDERS O, PART P

WHERE O.PARTNUM = P.PARTNUM
AND P.DESCRIPTION = 'ROAD BIKE'

 TOTAL
===========
 19610.00

With this setup, the sales people can keep the ORDERS table updated, the

production department can keep the PART table current, and you can find your bottom
line without redesigning your database.

Query Multiple Tables / 57

Can you join more than one table? For example, to generate information to send
out an invoice, you could type this statement:

INPUT/OUTPUT :
SELECT C.NAME, C.ADDRESS, (O.QUANTITY * P.PRICE) TOTAL

FROM ORDER O, PART P, CUSTOMER C
WHERE O.PARTNUM = P.PARTNUM
AND O.NAME = C.NAME

 NAME ADDRESS TOTAL
========== ============ =========

TRUE WHEEL 55O HUSKER 1200.00
BIKE SPEC CPT SHRIVE 2400.00
LE SHOPPE HOMETOWN 3600.00

AAA BIKE 10 OLDTOWN 1200.00
TRUE WHEEL 55O HUSKER 2102.70
BIKE SPEC CPT SHRIVE 2803.60

TRUE WHEEL 55O HUSKER 196.00
AAA BIKE 10 OLDTOWN 213.50
BIKE SPEC CPT SHRIVE 542.50

TRUE WHEEL 55O HUSKER 1590.00
BIKE SPEC CPT SHRIVE 5830.00
JACKS BIKE 24 EGLIN 7420.00

LE SHOPPE HOMETOWN 2650.00
AAA BIKE 10 OLDTOWN 2120.00

You could make the output more readable by writing the statement like this :

INPUT/OUTPUT :

SELECT C.NAME, C.ADDRESS,
O.QUANTITY * P.PRICE TOTAL
FROM ORDERS O, PART P, CUSTOMER C

WHERE O.PARTNUM = P.PARTNUM
AND O.NAME = C.NAME
ORDER BY C.NAME

NAME ADDRESS TOTAL
========== ========== ===========

AAA BIKE 10 OLDTOWN 213.50
AAA BIKE 10 OLDTOWN 2120.00

AAA BIKE 10 OLDTOWN 1200.00
BIKE SPEC CPT SHRIVE 542.50
BIKE SPEC CPT SHRIVE 2803.60

BIKE SPEC CPT SHRIVE 5830.00
BIKE SPEC CPT SHRIVE 2400.00
JACKS BIKE 24 EGLIN 7420.00

LE SHOPPE HOMETOWN 2650.00
LE SHOPPE HOMETOWN 3600.00
TRUE WHEEL 55O HUSKER 196.00

TRUE WHEEL 55O HUSKER 2102.70
TRUE WHEEL 55O HUSKER 1590.00
TRUE WHEEL 55O HUSKER 1200.00

 Oracle / 58

You can make the previous query more specific, thus more useful, by adding the
DESCRIPTION column as in the following example :

INPUT/OUTPUT :
SELECT C.NAME, C.ADDRESS,

O.QUANTITY * P.PRICE TOTAL,
P.DESCRIPTION
FROM ORDERS O, PART P, CUSTOMER C

WHERE O.PARTNUM = P.PARTNUM
AND O.NAME = C.NAME

ORDER BY C.NAME

NAME ADDRESS TOTAL DESCRIPTION

========== ========== ========= ==============

AAA BIKE 10 OLDTOWN 213.50 TIRES

AAA BIKE 10 OLDTOWN 2120.00 ROAD BIKE

AAA BIKE 10 OLDTOWN 1200.00 TANDEM

BIKE SPEC CPT SHRIVE 542.50 PEDALS

BIKE SPEC CPT SHRIVE 2803.60 MOUNTAIN BIKE

BIKE SPEC CPT SHRIVE 5830.00 ROAD BIKE

BIKE SPEC CPT SHRIVE 2400.00 TANDEM

JACKS BIKE 24 EGLIN 7420.00 ROAD BIKE

LE SHOPPE HOMETOWN 2650.00 ROAD BIKE

LE SHOPPE HOMETOWN 3600.00 TANDEM

TRUE WHEEL 55O HUSKER 196.00 SEATS

TRUE WHEEL 55O HUSKER 2102.70 MOUNTAIN BIKE

TRUE WHEEL 55O HUSKER 1590.00 ROAD BIKE

TRUE WHEEL 55O HUSKER 1200.00 TANDEM

This information is a result of joining three tables. You can now use this

information to create an invoice.

3.2.2 Non-Equi-Joins

Because SQL supports an equi-join, you might assume that SQL also has a non-

equi-join. You would be right! Whereas the equi-join uses an = sign in the WHERE

statement, the non-equi-join uses everything but an = sign. For example :

INPUT :

SELECT O.NAME, O.PARTNUM, P.PARTNUM,

O.QUANTITY * P.PRICE TOTAL

FROM ORDERS O, PART P

WHERE O.PARTNUM > P.PARTNUM

OUTPUT :

Query Multiple Tables / 59

NAME PARTNUM PARTNUM TOTAL
========== =========== ========= =========
TRUE WHEEL 76 54 162.75
BIKE SPEC 76 54 596.75
LE SHOPPE 76 54 271.25
AAA BIKE 76 54 217.00
JACKS BIKE 76 54 759.50
TRUE WHEEL 76 42 73.50
BIKE SPEC 54 42 245.00
BIKE SPEC 76 42 269.50
LE SHOPPE 76 42 122.50
AAA BIKE 76 42 98.00
AAA BIKE 46 42 343.00
JACKS BIKE 76 42 343.00
TRUE WHEEL 76 46 45.75
BIKE SPEC 54 46 152.50
BIKE SPEC 76 46 167.75
LE SHOPPE 76 46 76.25
AAA BIKE 76 46 61.00
JACKS BIKE 76 46 213.50
TRUE WHEEL 76 23 1051.35
TRUE WHEEL 42 23 2803.60
...
This listing goes on to describe all the rows in the join WHERE O.PARTNUM >

P.PARTNUM. In the context of your bicycle shop, this information does not have much
meaning, and in the real world the equi-join is far more common than the non-equi-
join. However, you may encounter an application in which a non-equi-join produces the
perfect result.
3.2.3 Outer Joins versus Inner Joins

Just as the non-equi-join balances the equi-join, an outer join complements the
inner join. An inner join is where the rows of the tables are combined with each other,
producing a number of new rows equal to the product of the number of rows in each
table. Also, the inner join uses these rows to determine the result of the WHERE
clause. An outer join groups the two tables in a slightly different way. Using the PART
and ORDERS tables from the previous examples, perform the following inner join:

INPUT :
SELECT P.PARTNUM, P.DESCRIPTION, P.PRICE,
O.NAME, O.PARTNUM
FROM PART P
JOIN ORDERS O ON ORDERS.PARTNUM = 54
OUTPUT :

PARTNUM DESCRIPTION PRICE NAME PARTNUM
======= ========== ======= ======== ========

 54 PEDALS 54.25 BIKE SPEC 54
 42 SEATS 24.50 BIKE SPEC 54
 46 TIRES 15.25 BIKE SPEC 54
 23 MOUNTAIN BIKE 350.45 BIKE SPEC 54
 76 ROAD BIKE 530.00 BIKE SPEC 54
 10 TANDEM 1200.00 BIKE SPEC 54

The result is that all the rows in PART are spliced on to specific rows in ORDERS
where the column PARTNUM is 54. Here's a RIGHT OUTER JOIN statement :

INPUT/OUTPUT :
SELECT P.PARTNUM, P.DESCRIPTION, P.PRICE,

 Oracle / 60

O.NAME, O.PARTNUM
FROM PART P
RIGHT OUTER JOIN ORDERS O ON ORDERS.PARTNUM = 54

 PARTNUM DESCRIPTION PRICE NAME PARTNUM
 ======= =========== ======= ======== =======
 <null> <null> <null> TRUE WHEEL 23
 <null> <null> <null> TRUE WHEEL 76
 <null> <null> <null> TRUE WHEEL 10
 <null> <null> <null> TRUE WHEEL 42
 54 PEDALS 54.25 BIKE SPEC 54
 42 SEATS 24.50 BIKE SPEC 54
 46 TIRES 15.25 BIKE SPEC 54
 23 MOUNTAIN BIKE 350.45 BIKE SPEC 54
 76 ROAD BIKE 530.00 BIKE SPEC 54
 10 TANDEM 1200.00 BIKE SPEC 54
 <null> <null> <null> BIKE SPEC 10
 <null> <null> <null> BIKE SPEC 23
 <null> <null> <null> BIKE SPEC 76
 <null> <null> <null> LESHOPPE 76
 <null> <null> <null> LE SHOPPE 10
 <null> <null> <null> AAA BIKE 10
 <null> <null> <null> AAA BIKE 76
 <null> <null> <null> AAA BIKE 46
 <null> <null> <null> JACKS BIKE 76

This type of query is new. First you specified a RIGHT OUTER JOIN, which
caused SQL to return a full set of the right table, ORDERS, and to place nulls in the
fields where ORDERS.PARTNUM <> 54. Following is a LEFT OUTER JOIN statement
:

INPUT/OUTPUT :
SELECT P.PARTNUM, P.DESCRIPTION,P.PRICE,
O.NAME, O.PARTNUM

FROM PART P
LEFT OUTER JOIN ORDERS O ON ORDERS.PARTNUM = 54

PARTNUM DESCRIPTION PRICE NAME PARTNUM
=========== ============== =========== ========= =========
 54 PEDALS 54.25 BIKE SPEC 54

 42 SEATS 24.50 BIKE SPEC 54
 46 TIRES 15.25 BIKE SPEC 54
 23 MOUNTAIN BIKE 350.45 BIKE SPEC 54

 76 ROAD BIKE 530.00 BIKE SPEC 54
 10 TANDEM 1200.00 BIKE SPEC 54

You get the same six rows as the INNER JOIN. Because you specified LEFT (the
LEFT table), PART determined the number of rows you would return. Because PART
is smaller than ORDERS, SQL saw no need to pad those other fields with blanks.

Don't worry too much about inner and outer joins. Most SQL products determine
the optimum JOIN for your query. In fact, if you are placing your query into a stored
procedure (or using it inside a program (both stored procedures and Embedded SQL
covered on Day 13, "Advanced SQL Topics"), you should not specify a join type even
if your SQL implementation provides the proper syntax. If you do specify a join type,
the optimizer chooses your way instead of the optimum way.

