

4.4 MICROPROCESSORS AND PERIPHERAL DEVICES

L T P

 3 - 3

RATIONALE

The study of microprocessors in terms of architecture, software and interfacing techniques leads

to the understanding of working of CPU in a microcomputer. The development in

microprocessors of 32 bit architecture brings the students face-to-face with mainframe enabling

them to get employment in R&D, assembly, repair and maintenance of hardware of

microprocessors and computers. Microprocessors find application in process control industry.

They also form a part of the electronic switching system between source and destination in long

distance telecommunications. Thus the microprocessor is an area of specialization. Students of

electronics and related engineering branches often use microprocessors to introduce

programmable control in their projects, in industrial training.

LEARNING OUTCOMES

After undergoing the subject, the students will be able to:

 Describe all the internal parts and pins of 8085

 Write and Edit assembly language program using mnemonics

 Write, execute and debug assembly language programs for simple applications

 Interface various peripheral devices with microprocessor.

 Use various data transfer techniques in micro computers

 Describe the internal parts and pins of 8086

DETAILED CONTENTS

1. Evolution of Microprocessor (03 Periods)

Typical organization of a microcomputer system and functions of its various blocks.

Microprocessor, its evolution, function and impact on modern society

2. Architecture of a Microprocessor (With reference to 8085 microprocessor)

 (09 periods)

Concept of Bus, bus organization of 8085, Functional block diagram of 8085 and

function of each block, Pin details of 8085 and related signals, Demultiplexing of

address/data bus generation of read/write control signals, Steps to execute a stored

programme

3. Instruction Timing and Cycles (06 periods)

 Instruction cycle, machine cycle and T-states, Fetch and execute cycle.

4. Programming (with respect to 8085 microprocessor) (12 periods)

 Brief idea of machine and assembly languages, Machines and Mnemonic codes.

 Instruction format and Addressing mode. Identification of instructions as to which

 addressing mode they belong. Concept of Instruction set. Explanation of the

 instructions of the following groups of instruction set. Data transfer group,

 Arithmetic Group, Logic Group, Stack, I/O and Machine Control Group. Programming

exercises in assembly language. (Examples can be taken from the list of experiments).

5. Memories and I/O interfacing (08 periods)

Concept of memory mapping, partitioning of total memory space. Address decoding,

concept of peripheral mapped I/O and memory mapped I/O. Interfacing of memory

mapped I/O devices.

6. Interrupts (03 periods)

Concept of interrupt, Maskable and non-maskable, Edge triggered and level triggered

interrupts, Software interrupt, Restart interrupts and its use, Various hardware interrupts

of 8085, Servicing interrupts, extending interrupt system

7. Data Transfer Techniques (03 periods)

Concept of programmed I/O operations, sync data transfer, async data transfer (hand

shaking), Interrupt driven data transfer, DMA, Serial output data, Serial input data

8. Peripheral devices (02 periods)

8255 PPI, 8253 PIT and 8257 DMA controller

9 Architecture of 8086 Microprocessor (02 periods)

- Block diagram

- Minimum and Maximum mode

- Pin and Signals

LIST OF PRACTICALS

1. Familiarization of different keys of 8085 microprocessor kit and its memory map

2. Steps to enter, modify data/program and to execute a programme on 8085 kit

3. Writing and execution of ALP for addition and sub station of two 8 bit numbers

4. Writing and execution of ALP for multiplication and division of two 8 bit numbers

5. Writing and execution of ALP for arranging 10 numbers in ascending/descending order

6. Writing and execution of ALP for 0 to 9 BCD counters (up/down counter according to

choice stored in memory)

7. Interfacing exercise on 8255 like LED display control

8. Interfacing exercise on 8253 programmable interval timer

9. Interfacing exercise on 8279 programmable KB/display interface like to display the hex

code of key pressed on display

10. Use of 8085 emulator for hardware testing

INSTRUCTIONAL STRATEGY

The digital systems in microprocessors have significant importance in the area of electronics.

Adequate competency needs to be developed by giving sufficient practical knowledge in

microprocessors (programming as well as interfacing). Help may be taken in the form of charts,

simulation packages to develop clear concepts of the subject. Programming exercises other than

the given in the list may be given to the students.

MEANS OF ASSESSMENT

 Assignments and quiz/class tests, mid-term and end-term written tests

 Actual laboratory and practical work, exercises

 Viva-voce

RECOMMENDED BOOKS

1. Microprocessor Architecture, Programming and Applications with 8080/8085 by Ramesh

S Gaonker, Willey Eastern Ltd. New Delhi

2. Introduction to Microprocessor by Mathur ,Tata McGraw Hill Education Pvt Ltd , New

Delhi

3. Microprocessor and Microcontrollers by Dr BP Singh, Galgotia Publications, New Delhi

4. Microprocessor and Applications by Badri Ram: Tata McGraw Hill Education Pvt Ltd ,

New Delhi

5. Microprocessor and Microcomputers by Refiquzzaman, Prentice Hall of India Ltd., New

Delhi.

6. Microprocessor programming & applications.by sudhir Goyal, North Publication.

7. Digital Logic and Computer Design by Mano, M Morris; Prentice Hall of India, New

Delhi

8. Digital Electronics by Rajaraman; Prentice Hall of India Ltd., New Delhi

9. e-books/e-tools/relevant software to be used as recommended by
AICTE/HSBTE/NITTTR.

Websites for Reference:

 http://swayam.gov.in

 SUGGESTED DISTRIBUTION OF MARKS

Topic

No.

Time Allotted

(Periods)

Marks Allotted (%)

1. 03 05

2. 09 20

3 06 15

4 12 25

5. 08 15

6. 03 05

7. 03 05

8. 02 05

9 02 05

Total 48 100

 MICROPROCESSORS AND PERIPHERAL DEVICES 1

UNIT-1 Evolution of Microprocessor

Definition of the Microprocessor

The microprocessor is a programmable device that takes in numbers, performs on them arithmetic or logical

operations according to the program stored in memory and then produces other numbers as a result.

Evolution of Microprocessors

First Generation (4 - bit Microprocessors) the first generation microprocessors were introduced in the year 1971-

1972 by Intel Corporation. It was named Intel 4004 since it was a 4-bit processor. It was a processor on a single

chip. It could perform simple arithmetic and logical operations such as addition, subtraction, Boolean OR and

Boolean AND.I had a control unit capable of performing control functions like fetching an instruction from storage

memory, decoding it, and then generating control pulses to execute it. Second Generation (8 - bit

Microprocessor)The second generation microprocessors were introduced in 1973 again by Intel. It was a first 8 - bit

microprocessor which could perform arithmetic and logic operations on 8-bit words. It was Intel 8008, and another

improved version was Intel 8088.Third Generation (16 - bit Microprocessor) The third generation microprocessors,

introduced in 1978 were represented by Intel's 8086, Zilog Z800 and 80286, which were 16 - bit processors with a

performance like minicomputers. Fourth Generation (32 - bit Microprocessors) Several different companies

introduced the 32-bit microprocessors, but the most popular one is the Intel 80386.Fifth Generation (64 - bit

Microprocessors)From 1995 to now we are in the fifth generation. After 80856, Intel came out with a new processor

namely Pentium processor followed by Pentium Pro CPU, which allows multiple CPUs in a single system to achieve

multiprocessing. Other improved 64-bit processors are Celeron, Dual, Quad, Octa Core processors.

Basic Terms used in Microprocessor

Instruction Set - The group of commands that the microprocessor can understand is called Instruction set. It is an

interface between hardware and software.

 Bus - Set of conductors intended to transmit data, address or control information to different elements in a

microprocessor. A microprocessor will have three types of buses, i.e., data bus, address bus, and control bus.

IPC (Instructions per Cycle) - It is a measure of how many instructions a CPU is capable of executing in a single

clock.

 Clock Speed - It is the number of operations per second the processor can perform. It can be expressed in

megahertz (MHz) or gigahertz (GHz). It is also called the Clock Rate.

Bandwidth - The number of bits processed in a single instruction is called Bandwidth.

 MICROPROCESSORS AND PERIPHERAL DEVICES 2

Word Length - The number of bits the processor can process at a time is called the word length of the processor. 8-

bit Microprocessor may process 8 -bit data at a time. The range of word length is from 4 bits to 64 bits depending

upon the type of the microcomputer.

Working of Microprocessor

The microprocessor follows a sequence to execute the instruction: Fetch, Decode, and then Execute. Initially, the

instructions are stored in the storage memory of the computer in sequential order. The microprocessor fetches those

instructions from the stored area (memory), then decodes it and executes those instructions till STOP instruction is

met. Then, it sends the result in binary form to the output port. Between these processes, the register stores the

temporary data and ALU (Arithmetic and Logic Unit) performs the computing functions.

Features of Microprocessor

Low Cost - Due to integrated circuit technology microprocessors are available at very low cost. It will reduce the

cost of a computer system.

High Speed - Due to the technology involved in it, the microprocessor can work at very high speed. It can execute

millions of instructions per second.

Small Size - A microprocessor is fabricated in a very less footprint due to very large scale and ultra large scale

integration technology. Because of this, the size of the computer system is reduced.

Versatile - The same chip can be used for several applications, therefore, microprocessors are versatile.

Low Power Consumption - Microprocessors are using metal oxide semiconductor technology, which consumes less

power.

Less Heat Generation - Microprocessors uses semiconductor technology which will not emit much heat as compared

to vacuum tube devices.

Reliable - Since microprocessors use semiconductor technology, therefore, the failure rate is very less. Hence it is

very reliable.

Portable - Due to the small size and low power consumption microprocessors are portable.

What is the 8085 Microprocessor?

Generally, the 8085 is an 8-bit microprocessor, and it was launched by the Intel team in the year of 1976 with the

help of NMOS technology. This processor is the updated version of the microprocessor. The configurations of 8085

microprocessor mainly include data bus-8-bit, address bus-16 bit, program counter-16-bit, stack pointer-16 bit,

registers 8-bit, +5V voltage supply, and operates at 3.2 MHz single segment CLK. The applications of 8085

 MICROPROCESSORS AND PERIPHERAL DEVICES 3

microprocessor are involved in microwave ovens, washing machines, gadgets, etc. The features of the 8085

microprocessor are as below:

• This microprocessor is an 8-bit device that receives, operates, or outputs 8-bit information in a

simultaneous approach.

• The processor consists of 16-bit address and 8 bit data lines and so the capacity of the device is 216 which

is 64KB of memory.

• This is constructed of a single NMOS chip device and has 6200 transistors

• A total of 246 operational codes and 80 instructions are present

• As the 8085 microprocessor has 8-bit input/output address lines, it has the ability to address 28 = 256 input

and output ports.

• This microprocessor is available in a DIP package of 40 pins

• In order to transfer huge information from I/O to memory and from memory to I/O, the processor shares its

bus with the DMA controller.

• It has an approach where it can enhance the interrupt handling mechanism

• An 8085 processor can even be operated as a three-chip microcomputer using the support of IC 8355 and

IC 8155 circuits.

• It has an internal clock generator

• It functions on a clock cycle having a duty cycle of 50%

Basic Organization of Microcomputer

1. MP

i. ALU

 MICROPROCESSORS AND PERIPHERAL DEVICES 4

This unit executes all arithmetic and logical operations as specified by instruction set; and produces

output.

The results of addition, subtraction, and logical operations (AND, OR, XOR) are stored in the

registers or in memory unit or sent to output unit.

ii. Register unit

Consists of various registers.

Used for temporary storage of data during execution of data.

iii. CU

Controls the operations of different instructions.

Provides necessary timing and control signals to all the operations in the MP and peripherals

including memory.

2. Memory

Stores binary information such as instruction and data, and provide these information to MP when required.

To execute programs, the MP reads data and instructions from memory and performs the computing

operations.

3. System bus

The system bus is a communication path between MP and peripherals.

It is used to carry data, address and control signals.

It consists:

Data bus: carries data

Address bus: carries address

Control bus: carries control signals

4. I/O bus

Input unit is used to input instruction or data to the MP externally.

Output unit is used to carry out the information from the MP unit.

 MICROPROCESSORS AND PERIPHERAL DEVICES 5

UNIT-2 Architecture of a Microprocessor

Architecture of a Microprocessor

Definition: 8085 is an 8-bit microprocessor as it operates on 8 bits at a time and is created with N-MOS technology.

This microprocessor exhibits some unique characteristics and this is the reason it still holds popularity among the

microprocessors.

Basically, 8085 was the first commercially successful microprocessor by Intel. As some of the architectural

drawbacks associated with 8080 was also eliminated by 8085.

The size of the data bus of 8085 is 8 bits while that of the address bus is 16. Therefore, can address 64 KB (i.e., 216)

memory. Also, as it can perform 8-bit operation thus the size of ALU is also 8-bit.

It also provides operational advantages, as 8085 needs a single +5V supply with only one clock single of width 320

ns. While 8080 requires 3 power supply lines and 2 clock signals of 500 ns.

Architecture of 8085 Microprocessor

The architecture of 8085 microprocessor provides the idea about what are the operations to be executed and how

these are performed.

It can perform operations that are given below:

1. Operates on and stores 8-bit data.

2. It executes arithmetic and logic operations.

3. 8085 also sequences the instructions to be executed.

4. Stores data temporarily.

However, in order to perform all such operations, the processor needs a control unit, arithmetic logic unit, registers,

buses etc.

Working of Microprocessor

The microprocessor follows a sequence to execute the instruction: Fetch, Decode, and then Execute. Initially, the

instructions are stored in the storage memory of the computer in sequential order. The microprocessor fetches those

instructions from the stored area (memory), then decodes it and executes those instructions till STOP instruction is

met. Then, it sends the result in binary form to the output port. Between these processes, the register stores the

temporary data and ALU (Arithmetic and Logic Unit) performs the computing functions.

 MICROPROCESSORS AND PERIPHERAL DEVICES 6

Functional Units of 8085:

1. Registers: These are nothing but set of flip flops. These are basically used to hold (store) the data.

General purpose registers– 8085 microprocessors contain 6 general purpose registers that are present inside the

microprocessor and stores 8-bit data in order to execute a program.

These general purpose registers are B, C, D, E, H and L. These registers can be combined to form pairs – BC, DE

and HL in order to execute the 16-bit operation.

These are programmable registers that means these registers are accessed by the programmer to insert and transfer

the data by making use of instructions.

Temporary registers: These registers are used by the ALU to store the data on temporary basis and these are not

accessed by the programmer. These are of 2 types:

1. Temporary data register – It is an 8-bit register that holds the operand and provides it to the ALU for

program execution. Also, the immediate results are stored by the ALU in this register.

2. W and Z register – These registers are also used to hold the temporary values. It is used by the control

section of the microprocessor so as to store the data during operations.

2. Program Counter (PC): It is basically a special purpose register that is used to store the memory location of the

instruction to be performed. As it is clear that in order to fetch an instruction from the memory the microprocessor

needs to know about its address.

It is a 16-bit register as it stores address. This register is used by the microprocessor to line up the instructions that

are to be executed in a sequential manner.

 MICROPROCESSORS AND PERIPHERAL DEVICES 7

It functions in such a way that it fetches the opcode from one memory location and simultaneously gets incremented

by the next memory location. Thus, it provides sequencing of the program to be executed.

3. Stack Pointer (SP): It is also a 16-bit register and is a part of memory. The data is stored in the stack in serial

format and stack pointer generally stores the address of the last data element stored in the stack. Thus the stack is

based on LIFO.

Whenever a new data is added in the stack, then the stack pointer starts pointing towards the very next memory

location.

As against, when a data element is removed from the stack, then the stack pointer points to previous occupied

memory location.

4. Accumulator: It is an 8-bit register that stores the result of the operation performed by the ALU. It is also known

as register A.

5. Flags: Flag register basically holds the status of the current result generated by the ALU and not the actually

generated result. Thus we can say it is used to test the data conditions.

8085 has 5 flags that shows 5 different data conditions. These are carry, sign, zero, parity and auxiliary carry flags.

However, the mostly used are: sign, carry and zero.

A flag is a flip flop. It indicates some condition produced by the execution of an instruction. The flag register of

8085 microprocessor consists of 5 flags. The flag register is connected to ALU. When an operation is performed by

ALU the result is transferred on data bus and status of result will be stored in flip flops. The different flags and their

positions in flag register are shown in following fig.

Flag register of 8085 microprocessor

1) The carry flag (CF):-

This flag is set whenever there has been a carry out of, or a borrow into, the higher order bit of the result. The flag is

used by the instructions that add aNd subtract multi byte numbers.

1-carry out from MSB bit on addition or borrow into MSB bit on subtraction

0-no carry out or borrow into MSB bit

2) The parity flag (PF):-

This flag is set whenever the result has even parity, an even number of 1 bits. If parity is odd, PF is cleared.

1-low byte has even number of 1 bits

 MICROPROCESSORS AND PERIPHERAL DEVICES 8

0-low byte has odd parity

3) The auxiliary carry flag (AF):-

This flag is set whenever there has been a carry out of the lower nibble into the higher nibble or a borrow from

higher nibble into the lower nibble of an 8 bit quantity, else AF is reset. This flag is used by decimal arithmetic

instructions.

1-carry out from bit 3 on addition or borrow into bit 3 on subtraction

0-otherwise

4) The zero flag (ZF):-

This flag is set, when the result of operation is zero, else it is reset.

1-zero result

0-non-zero result

5) The sign flag (SF):-

This flag is set, when MSB (Most Significant Bit) of the result is 1. Since negative binary numbers are represented

in the 8085 CPU in standard two’s complement notation, SF indicates sign of the result.

1-MSB is 1 (negative)

0-MSB is 0 (positive)

Working of 8085 Microprocessor

Now after having an idea about the functional units of the 8085 microprocessor, let us proceed further to understand

the operation of the 8085 microprocessor.

We already know that the function of a microprocessor is to execute instructions. Also, in order to execute an

instruction, it first needs to be fetched then decoded and then executed. And in order to fetch an instruction, firstly

the address of the instruction must be known.

The address of the instruction is present in the program counter. This address is then placed on the 16-bit address

bus and is then forwarded towards the memory. From the memory, the instruction present at that particular memory

location is fetched through the 8-bit data bus.

 MICROPROCESSORS AND PERIPHERAL DEVICES 9

Here, in the above figure, we can clearly see that we have combine used data bus and address bus so as to reduce the

number of lines. As we know that at a particular time the processor will access either the data bus or the address bus.

Further when the instruction is fetched from the memory, then through internal buses the instruction is provided to

the instruction register. At this particular point of time fetching the instruction from the memory is over.

Now, it’s time for the processor to decode the instruction. So, it is then fed to the instruction decoder.

We already have the idea that both data and instruction in the memory is stored in the form of an opcode. So, the

fetched opcode is analyzed by the instruction decoder present inside the processor in order to execute the instruction.

But, a noteworthy point over here is that, after an instruction is fetched from the memory, then PC increments itself

thereby providing the address location of the next instruction. As PC does not play any role in decoding and

executing.

 MICROPROCESSORS AND PERIPHERAL DEVICES 10

However, after execution of first instruction, the next is fetched form the memory.

Now, this is all about fetching and decoding, now what about the execution of the instruction.

In the above figure, we can see the timing and control circuit. This circuit basically sends the control signals to the

various units of the microprocessor to execute the instruction.

Suppose, the instruction is ADD A and B. This simply tells the ALU to add the data present in B register with the

data present in accumulator i.e., A register. But, in 8085 the decoded instruction is simply ADD B. So,

automatically, the ALU adds the value present in the accumulator with the data in register B.

Also, in 8085 the outcome of the operation is stored register A which is nothing but an accumulator.

Further when an instruction ADD C is decoded by the 8085, then data at C register is added to the data present in

register A and is stored at register A. Due to such cumulative action, register A is termed as an accumulator.

Basically, the timing and control circuit timely sends the signals to the accumulator to release its value for

proceeding execution. Also, this timing and control circuit sends signals to the register select that tells it to choose

the particular register.

 MICROPROCESSORS AND PERIPHERAL DEVICES 11

Once the data is fetched from a particular register then it is stored in the temporary register and it is used by the

ALU. It is to be kept in mind that a programmer can only access the general purpose register as the temporary

register is used by the processor to hold the 2nd operand of the operation.

Now, once the operation is executed, then the result is fed to the accumulator through the data bus. But a flag

register is also present that holds the status of the result present at the accumulator.

As we have also discussed in the functional unit that a flag register holds a sign, carry etc. related information of the

generated result.

After every instruction execution performed by the ALU, the status of the flag register gets changed. So, ALU

produces the result and its status simultaneously after each operation.

As we have already discussed that W and Z are the temporary registers but these are not accessed by the

programmer as both are used by the processor to hold the temporary value stored by it.

So, this is all about the block diagram and working of 8085 microprocessor.

Applications of 8085 microprocessor

8085 finds its major applications in programmable calculators as well as in numerical control and environment

monitoring systems. These are also used in switching, banking and financial systems.

Pin Diagram 8085

 MICROPROCESSORS AND PERIPHERAL DEVICES 12

The signals of this 40 pin IC is grouped into 7 categories, which are given below:

 Power supply and clock signals

Data bus

 Address bus

 Serial I/O ports

 Control and status signals

Interrupts and externally generated signals

Direct memory access

These are the categories among which the 40 pin configuration of 8085 is divided. So, let us proceed to understand

the role of each pin inside the 8085 microprocessor. Pin Description of 8085 Microprocessor1.Power supply and

clock signals: In 40 pin configuration, 4 pins are allotted to this particular category.

VCC – Pin number 40 denotes VCC, and an external power supply of + 5 V is provided at this pin.

VSS – Its pin number is 20. This pin shows the grounded connection of the microprocessor.

X1 and X2 – These are represented by pin number 1 and 2 respectively in the pin configuration. These 2 pins are

connected with a crystal or LC network to maintain the internal frequency of the clock generator.

CLK (OUT) – It is the 37th pin of the 8085 IC and acts as the system clock that keeps the record of time duration

required by each operation to get completed.

2. Address Bus – This category contains 8 pins. The address bus has 16 lines i.e.; it can carry 16 bits at a time.

However, out of 16, 8 are multiplexed with the data bus and the leftover 8 are separately shown by pin number 21 to

28 in the pin configuration. These are used to carry the address of data and instruction from the processor to the

memory location and is unidirectional in nature. These are denoted by A8 to A15 that represents the 8 MSB of the

memory location or input-output address.3.Data Bus with multiplexed address bus – This category also contains 8

pins.The size of the data bus of the 8085 microprocessor is 8 bits. However, to reduce the number of bus lines these

8-bit data bus lines are multiplexed with the 8-bit address bus. These are shown by pin number 12 to 19. The address

bus is denoted by A whereas the data bus is denoted by D. The pin configuration denotes the lower order

multiplexed address and data bus bits from AD0 to AD7.

 MICROPROCESSORS AND PERIPHERAL DEVICES 13

We have already discussed that the address bus contains the address of the desired memory location from where the

data or instruction is to be fetched. While the data bus contains the data or instruction that is needed to be fetched

from the memory.4.Serial I/O ports: It has basically 2 pins.

SID – SID denotes serial input data pin and its pin are numbered as 5. With this pin, data is serially fed to the

processor directly through the input devices.

SOD – SOD denotes serial output data pin and its pin number is 4, in the pin configuration of 8085. Once the data is

processed in the microprocessor then this pin represents bit by bit results at the output devices.

5. Control and status signals: Basically, 6 pins of the pin configuration are used by control and status signals.

ALE – ALE is an acronym for address latch enable and is pin number 30 in the configuration. We know that 8 lower

order bits of the 16-bit address bus are multiplexed with the 8-bit data bus.

This pin gets enabled at the time when the address is present at the multiplexed address and data bus. Otherwise, it

gets disabled showing the absence of an address on the bus.

RD – This pin is numbered 32 in the configuration and a low signal in this pin shows the read operation either from

I/O devices or from the memory unit. Thereby indicating that the data bus is now in a state or position to accept the

data from the memory or I/O devices.

WR – It is the 31st pin in the pin diagram and a low signal in this pin represents the write operation at the memory

or I/O devices. This indicates that the data present in the data bus is to be written into the desired memory address or

I/O device by the processor.

IO/M – It is pin number 34 and indicates the selection of a memory address or input-output device. This shows

whether the read/write operation is to be carried out at the memory location or at the I/O device.

The low signal at this pin shows that operation is performing over memory location. As against, a high signal at this

pin represents the operation at I/O device.

S0 and S1 – The pins S0 and S1 represent the status signal at pin number 29 and 33 respectively. These signals show

the type of recent operation of the microprocessor. The table below represents the status of the data bus under

different conditions:

6. Interrupts and Externally generated signals: Interrupts are the signals that are generated to break the sequence of

an ongoing operation. When an interrupt signal is generated then CPU immediately stops its recent task under

operation and switches to some other program known as interrupt service routine (ISR).However, after handling

ISR, the CPU gets back to its main program for execution.

 MICROPROCESSORS AND PERIPHERAL DEVICES 14

In the pin configuration, 5 types of interrupts are shown by 5 different pins from pin number 6 to 10. These pins are

used to manage the interrupt. Basically, there exist 2 types of interrupts:Maskable Interrupt and Non- maskable

interrupt Out of the 5 major interrupts 4 are the maskable interrupts. These are INTR, RST5.5, RST6.5, RST7.5 and

are easily manageable interrupts. However, TRAP is a non-maskable interrupt and holds the topmost priority among

all interrupts in the 8085 microprocessor.

RESET IN – It is pin number 36 in the pin diagram. An active low signal at this pin resets the PC of the

microprocessor to 0. Or we can say, after resetting the PC holds its initial memory address.

RESET OUT – It is the 3rd pin in the pin diagram. This pin generates a signal to provide information about the

resetting of the microprocessor. Also, we can say that once a processor is reset then all the connected devices must

also be reset.

So, enabling this signal shows the resetting of the interconnected devices.

INTA: It is the 11th pin of the 8085 pin configuration. A signal at this pin acknowledges the generated interrupt.

7. Direct Memory Access (DMA) :We are aware of the fact that memory and I/O devices are connected with each

other by the microprocessor. So, the intermediator i.e., CPU manages the data transfer between the input-output

device and memory. However, when data in a large amount is to be transferred between I/O devices and memory the

CPU gets disabled by tri-stating its buses. And this transfer is manageable by external control circuits. The DMA

has 2 pins.

HOLD – This signal is generated at pin number 39. This pin generates a signal to notify the processor that more than

one request is present to access the data and address bus.

When this signal gets enabled, the CPU frees the bus after completion of the recent operation. Once the hold signal

gets disabled, the processor can access the bus again.

HLDA -This signal is generated at pin number 38. This signal is enabled at the time when the processor gets HOLD

signal and it releases HLDA i.e., hold acknowledge signal. In order to show that the multiple requests are kept on

hold and will be considered once the bus gets free after the recent operation.

After the disabling of hold request, the HLDA signal becomes low.

READY -This is the 35th numbered pin in the pin diagram that maintains synchronization between the processor

and peripherals, memory. It is clear that a microprocessor has a much faster response than peripherals and memory.

So, this pin is enabled when the processor as well as the peripherals and memory both become ready to begin the

next operation. In the case when the READY pin is disabled, then the microprocessor is in the WAIT state.

 MICROPROCESSORS AND PERIPHERAL DEVICES 15

UNIT-3 Instruction Timing and Cycles

Instruction Cycle &Machine Cycle in 8085 Microprocessor:

The Program and data which are stored in the memory are used externally to the microprocessor for executing the

complete instruction cycle. Thus to execute a complete instruction of the program, the following steps should be

performed by the 8085 microprocessor.

• Fetching the opcode from the memory;

• Decoding the opcode to identify the specific set of instructions;

• Fetching the remaining Bytes left for the instruction, if the instruction length is of 2 Bytes or 3 Bytes;

• Executing the complete instruction procedure.

The given steps altogether constitute the complete instruction cycle. The above instructions are assumed by us for

being in the memory, at the specified locations allocated for the memory.

The points to be noted as without fetching of the opcode from the memory the complete instruction would remain

incomplete. Secondly decoding should be done, thirdly the fetching process should be done depending on the

instruction length. Thirdly the complete execution process should be carried out to complete the entire process of

execution.

Each instruction in 8085 microprocessor consists of two part- operation code (opcode) and operand. The opcode is

a command such as ADD and the operand is an object to be operated on, such as a byte or the content of a

register.

Instruction Cycle: The time taken by the processor to complete the execution of an instruction. An instruction

cycle consists of one to six machine cycles.

Machine Cycle: The time required to complete one operation; accessing either the memory or I/O device. A

machine cycle consists of three to six T-states.

T-State: Time corresponding to one clock period. It is the basic unit to calculate execution of instructions or

programs in a processor.

The seven Machine Cycle in 8085 Microprocessor are :

1. Opcode Fetch Cycle

2. Memory Read

3. Memory Write

 MICROPROCESSORS AND PERIPHERAL DEVICES 16

4. I/O Read

5. I/O Write

6. Interrupt Acknowledge

7. Bus Idle

1. Opcode Fetch Cycle: Each instruction of the microprocessor has one byte Opcode. The Opcode is stored in

memory. In order to fetch the Opcode from memory, processor executes the Opcode Fetch machine cycle. So, every

instruction starts with Opcode Fetch machine (OFM) cycle. The time taken by the microprocessor to execute the

Opcode Fetch cycle is 4T (T- states). Inorder to fetch the Opcode from memory, the first 3 T-states are used. The

remaining T-state is used for internal operations by the microprocessor.

The timing diagram for Opcode Fetch machine cycle is shown in figure.

The steps in Opcode Fetch machine cycle are given in table.

S. No T state Operation

1 T1 The microprocessor places the higher order 8-bits of the

memory address on A15 – A8 address bus and the lower order

8-bits of the memory address on AD7 – AD0 address / data bus.

2 The microprocessor makes the ALE signal HIGH and at the

middle of T1 state, ALE signal goes LOW.

3 The status signals are changed as IO/𝑀’ = 0, S1 =1 and S0 = 1.

These status signals do not change throughout the OF machine

cycle.

 MICROPROCESSORS AND PERIPHERAL DEVICES 17

4 T2 The microprocessor makes the RD’ line LOW to enable

memory read and increments the Program Counter.

5 The contents on D7 – D0 (i.e. the Opcode) are placed on the

address / data bus.

6 T3 The microprocessor transfers the Opcode on the address / data

bus to Instruction Register (IR).

7 The microprocessor makes the RD’ line HIGH to disable

memory read.

8 T4 The microprocessor decodes the instruction.

2. Memory Read Cycle: Single byte instructions require only Opcode Fetch machine cycles. But, 2-byte and 3-byte

instructions require additional machine cycles to read the operands from memory. The additional machine cycle is

called Memory Read machine cycle. For example, the instruction MVI A, 50H requires one OF machine cycle to

fetch the operand from memory and one MR machine cycle to read the operand (50H) from memory. The MR

machine cycle takes 3 T-states. The timing diagram for Memory Read machine cycle is shown in figure.

Timing Diagram for Memory Read Machine Cycle

The steps in Memory Read machine cycle are given in table.

 MICROPROCESSORS AND PERIPHERAL DEVICES 18

S. No T state Operation

1 T1 The microprocessor places the higher order 8-bits of the

memory address on A15 – A8 address bus and the lower order

8-bits of the memory address on AD7 – AD0 address / data bus.

2 The microprocessor makes the ALE signal HIGH and at the

middle of T1 state, ALE signal goes LOW.

3 The status signals are changed as IO/𝑀’ = 0, S1 =1 and S0 = 0.

These status signals do not change throughout the memory read

machine cycle.

4 T2 The microprocessor makes the RD’ line LOW to enable

memory read and increments the Program Counter.

5 The contents on D7 – D0 (i.e. the data) are placed on the

address / data bus.

6 T3 The data loaded on the address / data bus is moved to the

microprocessor.

7 The microprocessor makes the RD’ line HIGH to disable the

memory read operation.

3. Memory Write Cycle: Microprocessor uses the Memory Write machine cycle for sending the data in one of the

registers to memory. For example, the instruction STA 5000H writes the data in accumulator to the memory location

5000H. The MW machine cycle takes 3 T-states. The timing diagram for Memory Write machine cycle is shown in

figure.

Timing Diagram for Memory Write Machine Cycle

 MICROPROCESSORS AND PERIPHERAL DEVICES 19

The steps to disable the memory write machine cycle are given in table.

S. No T state Operation

1 T1 The microprocessor places the higher order 8-bits of the

memory address on A15 – A8 address bus and the lower order

8-bits of the memory address on AD7 – AD0 address / data bus.

2 The microprocessor makes the ALE signal HIGH and at the

middle of T1 state, ALE signal goes LOW.

3 The status signals are changed as IO/𝑀’ = 0, S1 =0 and S0 = 1.

These status signals do not change throughout the memory

write machine cycle.

4 T2 The microprocessor makes the 𝑊𝑅’ line LOW to enable

memory write.

5 The contents of the specified register are placed on the address /

data bus.

6 T3 The data placed on the address / data bus is transferred to the

specified memory location.

7 The microprocessor makes the 𝑊𝑅’ line HIGH to disable the

memory write operation.

 MICROPROCESSORS AND PERIPHERAL DEVICES 20

UNIT-4 Programming (with respect to 8085 microprocessor)

Computer Languages

Over the years, computer languages have been evolved from Low-Level to High-Level Languages. In the earliest

days of computers, only Binary Language was used to write programs. The computer languages are classified as

follows:

 Machine Language (low level language)

Low-Level language is the only language which can be understood by the computer. Low-level language is also

known as Machine Language. The machine language contains only two symbols 1 & 0. All the instructions of

machine language are written in the form of binary numbers 1's & 0's. A computer can directly understand the

machine language.

Assembly Language (middle level language)

Middle-level language is a computer language in which the instructions are created using symbols such as letters,

digits and special characters. Assembly language is an example of middle-level language. In assembly language, we

use predefined words called mnemonics. Binary code instructions in low-level language are replaced with

mnemonics and operands in middle-level language. But the computer cannot understand mnemonics, so we use a

translator called Assembler to translate mnemonics into machine language.

Assembler is a translator which takes assembly code as input and produces machine code as output. That means, the

computer cannot understand middle-level language, so it needs to be translated into a low-level language to make it

understandable by the computer. Assembler is used to translate middle-level language into low-level language.

High Level Language

High-level language is a computer language which can be understood by the users. The high-level language is very

similar to human languages and has a set of grammar rules that are used to make instructions more easily. Every

high-level language has a set of predefined words known as Keywords and a set of rules known as Syntax to create

instructions. The high-level language is easier to understand for the users but the computer cannot understand it.

High-level language needs to be converted into the low-level language to make it understandable by the computer.

We use Compiler or interpreter to convert high-level language to low-level language.

Languages like FORTRAN,C, C++, JAVA, Python, etc., are examples of high-level languages. All these

programming languages use human-understandable language like English to write program instructions. These

instructions are converted to low-level language by the compiler or interperter so that it can be understood by the

computer.

 MICROPROCESSORS AND PERIPHERAL DEVICES 21

MNEMONIC: English word MNEMONIC means "A device such as a pattern of letters, ideas, or associations that

assists in remembering something.” So, it’s usually used by assembly language programmers to remember the

"OPERATIONS" a machine can do, like "ADD" and "MUL" and "MOV" etc. This is assembler specific.

MACHINE CODE: It is the sequence of numbers that flip the switches in the computer on and off (means 1 and 0)

to perform a certain job of work - such as addition of numbers, branching, multiplication, etc etc. This is purely

machine specific and well documented by the implementers of the processor.

Instruction formats: 8085

An instruction (instruction format) is a command to the microprocessor to perform a given task on a particular data.

Each instruction (instruction format) is of two parts. One is to be performed, called the operation code or opcode and

the second one is the data to be operated on, called the operand. Operands or data can be specified in different ways.

It may include an 8-bit or 16-bit data, an internal register. a memory location, or it or 16-bit address. In some

instructions, the operand is implicit.

•The format of a typical instruction is composed of two parts: an operation code or op-code and an operand.

•Every instruction needs an op-code to specify what the operation of the instruction is and then an operand that gives

the appropriate data needed for that particular operation code.

•According to the word or byte size the 8085 instructions are classified into three types. They are

 (a) One byte (single) instructions.

 (b)Two byte instructions.

 (c) Three byte instructions.

One–byte instructions: An instruction with only opcode and do not require any data or address is called a one byte

instruction.

Ex: 1. MOV C, A Hex code = 4FH (one byte)

 2. ADD B Hex code = 80H (one byte)

 3. CMA Hex code = 2FH (one byte)

Two–byte instructions: A two byte instruction is one which contains an 8-bit op-code and 8-bit operand (Data).

Ex: 1. MVI A, 09 Hex code = 3E, 09 (two bytes)

 2. ADD B, 07 Hex code = 80, 07 (two bytes)

 MICROPROCESSORS AND PERIPHERAL DEVICES 22

 3. SUB A, 05 Hex code = 97, 05 (two bytes)

Three–byte instructions: A three byte instruction contains an opcode plus a 16 – bit address.

Ex: 1.LXI H, 8509 Hex code = 21, 09, 85 (Three bytes)

 2 .LDA 8509 Hex code = 3A, 09, 85 (Three bytes)

 3. JMP 9567 Hex code = C3, 67, 95 (Three bytes)

 4. STA 3525 Hex code = 32, 35, 25 (Three bytes)

Instruction Set:

The various techniques to specify data for instructions are:

1. 8-bit or 16-bit data may be directly given in the instruction itself.

2. The address of the memory location, I/O port or I/O device, where data resides, may be given in the

instruction itself.

3. In some instructions, only one register is specified. The content of the specified register is one of the

operands.

4. Some instructions specify two registers. The contents of the registers are the required data.

5. In some instructions, data is implied. The most instructions of this type operate on the content of the

accumulator.

Due to different ways of specifying data for instructions, the machine codes of all instructions are not of the same

length. It may 1-byte, 2-byte or 3-byte instruction.

Addressing Modes:

Each instruction requires some data on which it has to operate. There are different techniques to specify data for

instructions. These techniques are called addressing modes. Intel 8085 uses the following addressing modes:

Direct Addressing

In this addressing mode, the address of the operand (data) is given in the instruction itself.

Example

STA 2400H: It stores the content of the accumulator in the memory location 2400H.

 MICROPROCESSORS AND PERIPHERAL DEVICES 23

In this instruction, 2400H is the memory address where data is to be stored. It is given in the instruction itself. The

2nd and 3rd bytes of the instruction specify the address of the memory location. Here, it is understood that the

source of the data is accumulator.

Register Addressing

In register addressing mode, the operand is in one of the general purpose registers. The opcode specifies the address

of the register(s) in addition to the operation to be performed.

Example:

MOV A, B: Move the content of B register to register A.

Register Indirect Addressing

In Register Indirect mode of addressing, the address of the operand is specified by a register pair.

Example

LXI H, 2500 H - Load H-L pair with 2500H.

MOV A, M - Move the content of the memory location, whose address is in H-L pair (i.e. 2500 H) to the

accumulator.

HLT - Halt.

In the above program the instruction MOV A, M is an example of register indirect addressing. For this instruction,

the operand is in the memory. The address of the memory is not directly given in the instruction. The address of the

memory resides in H-L pair and this has already been specified by an earlier instruction in the program, i.e. LXI H,

2500 H.

Immediate Addressing

In this addressing mode, the operand is specified within the instruction itself.

Example

LXI H, 2500 is an example of immediate addressing. 2500 is 16-bit data which is given in the instruction itself. It is

to be loaded into H-L pair.

Implicit Addressing

There are certain instructions which operate on the content of the accumulator. Such instructions do not require the

address of the operand.

 MICROPROCESSORS AND PERIPHERAL DEVICES 24

Example

CMA, RAL, RAR, etc.

Symbols and Abbreviations

The symbol and abbreviations which have been used while explaining Intel 8085 instructions are as follows:

Symbol/Abbreviations Meaning

Addr 16-bit address of the memory location.

Data 8-bit data

data 16 16-bit data

r, r1, r2 One of the registers A, B, C, D, E, H or L

A, B, C, D, H, L 8-bit register

A Accumulator

H-L Register pair H-L

B-C Register pair B-C

D-E Register pair D-E

PSW Program Status Word

M Memory whose address is in H-L pair

H Appearing at the end of the group of digits specifies hexadecimal, e.g. 2500H

Rp One of the register pairs.

Rh The high order register of a register pair

Rl The low order register of a register pair

PC 16 bit program counter, PCH is high order 8 bits and PCL low order 8 bits of register

PC.

CS Carry Status

[] The contents of the register identified within bracket

[[]] The content of the memory location whose address is in the register pair identified

within brackets

^ AND operation

∨ OR operation

⊕ or ∀ Exclusive OR

 MICROPROCESSORS AND PERIPHERAL DEVICES 25

← Move data in the direction of arrow

⇔ Exchange contents

Intel 8085 Instructions

An instruction of a computer is a command given to the computer to perform a specified operation on given data. In

microprocessor, the instruction set is the collection of the instructions that the microprocessor is designed to

execute.

The programmer writes a program in assembly language using these instructions. These instructions have been

classified into the following groups:

Data Transfer Group

Instructions which are used to transfer the data from a register to another register from memory to register or register

to memory come under this group.

Instruction Set Explanation States Flags Addre-

ssing

Machine

Cycles

Example

MOV r1, r2

[r1] ← [r2]

Move the content of

the one register to

another

4 none Register 1 MOV A, B

MOV r, M

[r]←[[H-L]]

Move the content of

memory to register

7 none Register

Indirect

2 MOV B, M

MOV M, r

[[H-L]]←[r]

Move the content of

register to memory

7 none Register

Indirect

2 MOV M, C

MVI r, data

[r] ←data

Move immediate data

to register

7 None Immediate

Register

3 MVI M, 08

LXI rp, data 16

[rp] ←data 16 bits, [rh]

←8 MSBs, [rl] ←8

LSBs of data

Load Register pair

immediate

10 None Immediate 3 LXI H,

2500H

LDA addr

[A] ←[addr]

Load Accumulator

direct

13 None Direct 4 LDA 2400

H

STA Addr Store accumulator 13 None Direct 4 STA

 MICROPROCESSORS AND PERIPHERAL DEVICES 26

[addr] ←[A] direct 2000H

LHLD addr

[L] ←[addr], [H] ←

[addr + 1]

Load H-L pair direct 16 None Direct 5 LHLD

2500H

SHLD addr

[addr] ←[L], [addr +1]

← [H]

Store H-L pair direct 16 None Direct 5 SHLD

2500 H

LDAX rp

[A] ←[[rp]]

Load accumulator

indirect

7 None Register

Indirect

2 LDAX B

STAX rp

[[rp]] ←[A]

Store accumulator

indirect

7 None Register

Indirect

2 STAX D

XCHG

[H-L] ↔[D-E]

Change the contents

of H-L with D-E pair

4 None Register 1

Arithmetic Group

The instructions of this group perform arithmetic operations such as addition, subtraction, increment or decrement of

the content of a register or a memory.

Instruction

Set

Explanation States Flags Addre-

ssing

Machine

Cycles

Example

ADD r

[A] ←[A]+[r]

Add register to

accumulator

4 All Register 1 ADD K

ADD M

[A] ← [A] +

[[H-L]]

Add memory to

accumulator

7 All Register

indirect

2 ADD K

ACC r

[A] ← [A] + [r]

+ [CS]

Add register with carry to

accumulator

4 All Register 1 ACC K

ADC M

[A] ← [A] +

Add memory with carry

to accumulator

7 All Register

indirect

2 ADC K

 MICROPROCESSORS AND PERIPHERAL DEVICES 27

[[H-L]] [CS]

ADI data

[A] ← [A] +

data

Add immediate data to

accumulator

7 All Immediate 2 ADI 55K

ACI data

[A] ← [A] +

data + [CS]

Add with carry immediate

data to accumulator

7 All Immediate 2 ACI 55K

DAD rp

[H-L] ←[H-L] +

[rp]

Add register paid to H-L

pair

10 CS Register 3 DAD K

SUB r

[A] ←[A]-[r]

Subtract register from

accumulator

4 All Register 1 SUB K

SUB M

[A] ← [A] -

[[H-L]]

Subtract memory from

accumulator

7 ALL Register

indirect

2 SUB K

SBB r

[A] ←[A]-[H-

L]] - [CS]

Subtract memory from

accumulator with borrow

7 All Register

indirect

2 SBB K

SUI data

[A] ←[A]-data

Subtract immediate data

from accumulator

7 All Immediate 2 SUI 55K

SBI data

[A] ←[A]-data-

[CS]

Subtract immediate data

from accumulator with

borrow

7 All Immediate 2 XCHG

INR r

[r] ←[r]+1

Increment register content 4 All except

carry flag

Register 1 INR K

INR M

[[H-L]] ←[[H-

L]]+1

Increment memory

content

10 All except

carry flag

Register

indirect

3 INR K

DCR r

[r] ←[r] -1

Decrement register

content

4 All except

carry flag

Register 1 DCR K

 MICROPROCESSORS AND PERIPHERAL DEVICES 28

DCR M

[[H-L]] ← [[H-

L]]-1

Decrement memory

content

10 All except

carry flag

Register

indirect

3 DCR K

INX rp

[rp] ←[rp]+1

Increment memory

content

6 None Register 1 INX K

DCX rp

[rp] ←[rp]-1

Decrement register pair 6 None Register 1 DCX K

DAA Decimal adjust

accumulator

4

1 DAA

Logical Group

The instructions in this group perform logical operation such as AND, OR, compare, rotate, etc.

Instruction Set Explanation States Flags Addressing Machine

Cycles

ANA r

[A] ←[A]∧[r]

AND register with

accumulator

4 All Register 1

ANA M

[A] ←[A]∧[[H-]]

AND memory with

accumulator

4 All Register

indirect

2

ANI data

[A] ← [A] ∧ [data]

AND immediate data with

accumulator

7 All Immediate 2

ORA r

[A] ←[A]∨[r]

OR-register with

accumulator

4 All Register 1

ORA M

[A] ←[A]∨[[H-L]]

OR-memory with

accumulator

7 All Register

indirect

2

ORI data

[A] ← [A] ∨ [data]

OR -immediate data with

accumulator

7 All Immediate 2

XRA r [A] ← [A]∀[r] XOR register with 4 All Register 1

 MICROPROCESSORS AND PERIPHERAL DEVICES 29

accumulator

XRA M [A] ← [A] ∀ [[H-

L]]

XOR memory with

accumulator

7 All Register

indirect

2

XRI data [A] ←[A] ∀

[data]

XOR immediate data with

accumulator

7 All Immediate 2

CMA [A] ←[A] Complement the

accumulator

4 None Implicit 1

CMC

[CS] ←[CS]

Complement the carry status 4 CS

1

STC

[CS] ← 1

Set carry status 4 CS

1

CMP r

[A]-[r]

Compare register with

accumulator

4 All Register 1

CMP M

[A] - [[H-L]]

Compare memory with

accumulator

7 All Register

indirect

2

CPI data

[A] - data

Compare immediate data

with accumulator

7 All Immediate 2

RLC

[An+1] ←[An], [A0] ←[A7],

[CS] ←[A7]

Rotate accumulator left 4 Cs Implicit 1

RRC

[A7] ←[A0], [CS] ←[A0],

[An] ←[An+1]

Rotate accumulator right

CS Implicit 1

RAL

[An+1] ←[An], [CS]

←[A7], [A0] ←[CS]

Rotate accumulator left

through carry

CS Implicit 1

RAR

[An] ←[An+1], [CS]

Rotate accumulator right

through carry

CS Implicit 1

 MICROPROCESSORS AND PERIPHERAL DEVICES 30

←[A0], [A7] ←[CS]

Branch Control Group

This group contains the instructions for conditional and unconditional jump, subroutine call and return, and restart.

Unconditional Jump

Instruction

Set

Explanation States Flags Addressing Machine

Cycles

JMP

addr(label)

[PC] ← Label

Unconditional jump: jump to the

instruction specified by the address

10 None Immediate 3

Conditional Jump

Instruction

Set

Explanation States Machine

Cycles

Jump addr

(label)

[PC] ← Label

Conditional jump: jump to the instruction specified by the

address if the specified condition is fulfilled

10, if true

and

7, if not

true

3, if true and

2, if not true

Instruction Set Explanation Status States Flags Addressing Machine

Cycles

JZ addr (label) [PC] ←

address (label)

Jump, if the result

is zero

Jump if Z=1 7/10 None Immediate 2/3

JNZ addr (label)

[PC] ← address (label)

Jump if the result is

not zero

Jump if Z=0 7/10 None Immediate 2/3

JC addr (label)

[PC] ← address (label)

Jump if there is a

carry

Jump if CS

=1

7/10 None Immediate 2/3

JNC addr (label)

[PC] ← address (label)

Jump if there is no

carry

Jump if CS

=0

7/10 None Immediate 2/3

 MICROPROCESSORS AND PERIPHERAL DEVICES 31

JP addr (label)

[PC] ← address (label)

Jump if result is

plus

Jump if S=0 7/10 None Immediate 2/3

JM addr (label)

[PC] ← address (label)

Jump if result is

minus

Jump if S=1 7/10 None Immediate 2/3

JPE addr (label)

[PC] ← address (label)

Jump if even parity The parity

status P =1

7/10 None Immediate 2/3

JPO addr (label)

[PC] ← address (label)

Jump if odd parity The parity

status P =0

7/10 None Immediate 2/3

Unconditional CALL

Instruction Set Explanation States Flags Addressing Machine

Cycles

CALL addr (label)

[SP]-1] ← [PCH] ,[[SP-2] ←

[PCL], [SP] ← [SP]-2, [PC]

← addr(label)

Unconditional CALL: Call

the subroutine identified by

the address

18 None Immediate

/register

5

Conditional CALL

Instruction Set Explanation States Machine

Cycles

CALL addr (label)

[SP]-1] ← [PCH] , [[SP-2] ←

[PCL], [PC] ← addr (label), [SP]

← [SP]-2

Unconditional CALL: Call the subroutine

identified by the address if the specified

condition is fulfilled

18, if true

and

9, if not

true

5, if true and

2, if not true

Instruction

Set

Explanation Status States Flags Addressing Machine

Cycles

CC addr(label) Call subroutine if carry

status CS=1

CS =1 9/18 None Immediate

/register

2/5

 MICROPROCESSORS AND PERIPHERAL DEVICES 32

CNC addr

(label)

Call subroutine if carry

status CS=0

CS =0 9/18 None Immediate

/register

2/5

CZ addr

(label)

Call Subroutine if the

result is zero

Zero status

Z=1

9/18 None Immediate

/register

2/5

CNZ addr

(label)

Call Subroutine if the

result is not zero

Zero status

Z=0

9/18 None Immediate

/register

2/5

CP addr

(label)

Call Subroutine if the

result is plus

Sign status

S=0

9/18 None Immediate

/register

2/5

CM addr

(label)

Call Subroutine if the

result is minus

Sign status

S= 1

9/18 None Immediate

/register

2/5

CPE

addr(label)

Call subroutine if even

parity

Parity

Status P=1

9/18 None Immediate

/register

2/5

CPO

addr(label)

Call subroutine if odd

parity

Parity

Status P= 0

9/18 None Immediate

/register

2/5

Unconditional Return

Instruction Set Explanation States Flags Addressing Machine

Cycles

RET

[PCL] ← [[SP]], [PCH] ←

[[SP] + 1], [SP] ← [SP] + 2

Unconditional RET:

Return from subroutine

10 None Indirect 3

Conditional Return

Instruction Set Explanation States Machine Cycles

RET

[PCL] ← [[SP]],

[PCH] ← [[SP] +

1],

[SP] ← [SP] + 2

Conditional RET: Return from

subroutine

12, if true and 6, if not

true

3, if true and 1, if not

true

 MICROPROCESSORS AND PERIPHERAL DEVICES 33

Instruction

Set

Explanation Status States Flags Addressing Machine

Cycles

RC Return from subroutine if

carry status is zero.

CS =1 6/12 None Register

indirect

1/3

RNC Return from subroutine if

carry status is not zero.

CS = 0 6/12 None Register

indirect

1/3

RZ Return from subroutine if

result is zero.

Zero status

Z=1

6/12 None Register

indirect

1/3

RNZ Return from subroutine if

result is not zero.

Zero status

Z= 0

6/12 None Register

indirect

1/3

RP Return from subroutine if

result is not plus.

Sign Status

S= 0

6/12 None Register

indirect

1/3

RM Return from subroutine if

result is not minus.

Sign Status

S= 0

6/12 None Register

indirect

1/3

RPE Return from subroutine if

even parity.

Parity

Status P= 1

6/12 None Register

indirect

1/3

RPO Return from subroutine if

odd parity.

Parity

Status P= 1

6/12 None Register

indirect

1/3

Restart

Instruction Set Explanation States Flags Addressing Machine

Cycles

RST

[[SP]-1] ← [PCH], [[SP]-

2] ← [PCL],

[SP] ← [SP] - 2,

[PC] ← 8 times n

Restart is a one word CALL

instruction.

12 None Register

Indirect

3

The restart instructions and locations are as follows:

 MICROPROCESSORS AND PERIPHERAL DEVICES 34

Instruction Opcode Restart Locations

RST 0 C7 0000

RST 1 CF 0008

RST 2 D7 0010

RST 3 DF 0018

RST 4 E7 0020

RST 5 EF 0028

RST 6 F7 0030

RST 7 FF 0038

PCHL

Instruction Set Explanation States Flags Addressing Machine

Cycles

PCHL

[PC] ← [H-L],

[PCH] ←[H], [PCL]

←[L]

Jump address specified by H-L

pair

6 None Register 1

Stack, I/O and Machine Control Group

This group contains the instructions for input/output ports, stack and machine control.

Instruction

Set

Explanation States Flags Addressing Machine

Cycles

IN port -

address

[A] ← [Port]

Input to accumulator from

I/O port

10 None Direct 3

 MICROPROCESSORS AND PERIPHERAL DEVICES 35

OUT port-

address

[Port] ← [A]

Output from accumulator to

I/O port

10 None Direct 3

PUSH rp

[[SP] - 1] ←

[rh],

[[SP] - 2] ←

[rh],

[SP] ← [SP] -

2

Push the content of register

pair to stack

12 None Register(source)/register

Indirect(destination)

3

PUSH PSW

[SP]-1] ←

[A],

[[SP] -2] ←

PSW,

[SP] ← [SP] -

2

Push processor word 12 None Register(source)/register

Indirect(destination)

3

POP rp

[rl] ← [[SP]

],

[rh] ←

[[SP]+1],

[SP] ← [SP]

+ 2

Pop the content of register

pair, which was saved, from

the stack

10 None Register(source)/register

Indirect(destination)

3

HLT Halt 5 None

1

XTHL

[L] ↔ [[SP]],

[H] ↔ [[SP] +

1]

Exchange top stack with H-

L

16 None Register indirect 5

SPHL

[H-L] → [SP]

Moves the contents of H-L

pair to stack pointer

6 None Register 1

EI Enable Interrupts 4 None

1

SIM Set Interrupts Masks 4 None

1

 MICROPROCESSORS AND PERIPHERAL DEVICES 36

RIM Read Interrupts Masks 4 None

1

NOP No Operation 4 None

1

 MICROPROCESSORS AND PERIPHERAL DEVICES 37

UNIT-5 Memories and I/O interfacing

Memory mapped I/O and Isolated I/O

As a CPU needs to communicate with the various memory and input-output devices (I/O) as we know data

between the processor and these devices flow with the help of the system bus. There are three ways in which

system bus can be allotted to them:

1. Separate set of address, control and data bus to I/O and memory.

2. Have common bus (data and address) for I/O and memory but separate control lines.

3. Have common bus (data, address, and control) for I/O and memory.

In first case it is simple because both have different set of address space and instruction but require more buses.

Isolated I/O –

Then we have Isolated I/O in which we Have common bus(data and address) for I/O and memory but separate

read and write control lines for I/O. So when CPU decode instruction then if data is for I/O then it places the

address on the address line and set I/O read or write control line on due to which data transfer occurs between

CPU and I/O. As the address space of memory and I/O is isolated and the name is so. The address for I/O here is

called ports. Here we have different read-write instruction for both I/O and memory.

Memory Mapped I/O –

In this case every bus in common due to which the same set of instructions work for memory and I/O. Hence we

manipulate I/O same as memory and both have same address space, due to which addressing capability of

memory become less because some part is occupied by the I/O.

 MICROPROCESSORS AND PERIPHERAL DEVICES 38

Differences between memory mapped I/O and isolated I/O –

Isolated I/O Memory Mapped I/O

Memory and I/O have separate address

space Both have same address space

All address can be used by the memory

Due to addition of I/O addressable

memory become less for memory

Separate instruction control read and

write operation in I/O and Memory

Same instructions can control both

I/O and Memory

In this I/O address are called ports. Normal memory address are for both

More efficient due to separate buses Lesser efficient

Larger in size due to more buses Smaller in size

It is complex due to separate logic is

used to control both.

Simpler logic is used as I/O is also

treated as memory only.

 MICROPROCESSORS AND PERIPHERAL DEVICES 39

UNIT-6 Interrupts

Interrupts in 8085

Interrupts are the signals generated by the external devices to request the microprocessor to perform a task. There

are 5 interrupt signals, i.e. TRAP, RST 7.5, RST 6.5, RST 5.5, and INTR.

Interrupt are classified into following groups based on their parameter −

• Vector interrupt − In this type of interrupt, the interrupt address is known to the processor. For

example: RST 7.5, RST6.5, RST5.5, and TRAP.

• Non-Vector interrupt − in this type of interrupt, the interrupt address is not known to the processor so;

the interrupt address needs to be sent externally by the device to perform interrupts. For example: INTR.

• Maskable interrupt − in this type of interrupt, we can disable the interrupt by writing some instructions

into the program. For example: RST7.5, RST6.5, and RST5.5.

• Non-Maskable interrupt − In this type of interrupt, we cannot disable the interrupt by writing some

instructions into the program. For example: TRAP.

• Software interrupt − In this type of interrupt, the programmer has to add the instructions into the program

to execute the interrupt. There are 8 software interrupts in 8085, i.e. RST0, RST1, RST2, RST3, RST4,

RST5, RST6, and RST7.

• Hardware interrupt − There are 5 interrupt pins in 8085 used as hardware interrupts, i.e. TRAP, RST 7.5,

RST6.5, RST5.5, INTA.

Note − INTA is not an interrupt; it is used by the microprocessor for sending acknowledgement. TRAP has the

highest priority, then RST7.5 and so on.

Interrupt Service Routine (ISR)

A small program or a routine that when executed, services the corresponding interrupting source is called an ISR.

TRAP

It is a non-maskable interrupt, having the highest priority among all interrupts. By default, it is enabled until it gets

acknowledged. In case of failure, it executes as ISR and sends the data to backup memory. This interrupt transfers

the control to the location 0024H.

 MICROPROCESSORS AND PERIPHERAL DEVICES 40

RST 7.5

It is a maskable interrupt, having the second highest priority among all interrupts. When this interrupt is executed,

the processor saves the content of the PC register into the stack and branches to 003CH address.

RST 6.5

It is a maskable interrupt, having the third highest priority among all interrupts. When this interrupt is executed, the

processor saves the content of the PC register into the stack and branches to 0034H address.

RST 5.5

It is a maskable interrupt. When this interrupt is executed, the processor saves the content of the PC register into

the stack and branches to 002CH address.

INTR

It is a maskable interrupt, having the lowest priority among all interrupts. It can be disabled by resetting the

microprocessor.

When INTR signal goes high, the following events can occur −

• The microprocessor checks the status of INTR signal during the execution of each instruction.

• When the INTR signal is high, then the microprocessor completes its current instruction and sends active

low interrupt acknowledge signal.

• When instructions are received, then the microprocessor saves the address of the next instruction on stack

and executes the received instruction.

Interrupts can be classified into various categories based on different parameters:

1. Hardware and Software Interrupts –

When microprocessors receive interrupt signals through pins (hardware) of microprocessor, they are known

as Hardware Interrupts. There are 5 Hardware Interrupts in 8085 microprocessor. They are – INTR, RST 7.5,

RST 6.5, RST 5.5, TRAP

2. Software Interrupts are those which are inserted in between the program which means these are mnemonics

of microprocessor. There are 8 software interrupts in 8085 microprocessor. They are – RST 0, RST 1, RST 2,

RST 3, RST 4, RST 5, RST 6, RST 7.

3. Vectored and Non-Vectored Interrupts –

Vectored Interrupts are those which have fixed vector address (starting address of sub-routine) and after

 MICROPROCESSORS AND PERIPHERAL DEVICES 41

executing these, program control is transferred to that address.

Non-Vectored Interrupts are those in which vector address is not predefined. The interrupting device gives the

address of sub-routine for these interrupts. INTR is the only non-vectored interrupt in 8085 microprocessor.

1. Maskable and Non-Maskable Interrupts –

Maskable Interrupts are those which can be disabled or ignored by the microprocessor. These interrupts are

either edge-triggered or level-triggered, so they can be disabled. INTR, RST 7.5, RST 6.5, RST 5.5 are

maskable interrupts in 8085 microprocessor.

2. Non-Maskable Interrupts are those which cannot be disabled or ignored by microprocessor. TRAP is a non-

maskable interrupt. It consists of both level as well as edge triggering and is used in critical power failure

conditions.

Priority of Interrupts –

When microprocessor receives multiple interrupt requests simultaneously, it will execute the interrupt service

request (ISR) according to the priority of the interrupts.

Instruction for Interrupts –

1. Enable Interrupt (EI) – The interrupt enable flip-flop is set and all interrupts are enabled following the

execution of next instruction followed by EI. No flags are affected. After a system reset, the interrupt enable

flip-flop is reset, thus disabling the interrupts. This instruction is necessary to enable the interrupts again

(except TRAP).

2. Disable Interrupt (DI) – This instruction is used to reset the value of enable flip-flop hence disabling all the

interrupts. No flags are affected by this instruction.

3. Set Interrupt Mask (SIM) – It is used to implement the hardware interrupts (RST 7.5, RST 6.5, RST 5.5) by

setting various bits to form masks or generate output data via the Serial Output Data (SOD) line. First the

required value is loaded in accumulator then SIM will take the bit pattern from it.

 MICROPROCESSORS AND PERIPHERAL DEVICES 42

Read Interrupt Mask (RIM) – This instruction is used to read the status of the hardware interrupts (RST 7.5,

RST 6.5, RST 5.5) by loading into the A register a byte which defines the condition of the mask bits for the

interrupts. It also reads the condition of SID (Serial Input Data) bit on the microprocessor.

Level triggered interrupt is an indication that a device needs attention. ... Edge triggered interrupt is an event

notification. When some particular thing happens, the device generates an active edge on the interrupt line.

 MICROPROCESSORS AND PERIPHERAL DEVICES 43

UNIT-7 Data Transfer Techniques

Why is Data Transfer needed?

We can connect several I/O devices and memory peripherals to a microprocessor. However, since different

technologies are involved, there will be differences in the speed of operation and of data transfer.

Usually, when memory is connected with the microprocessor, there isn’t a stark difference in the processing speed

since semiconductor memories are generally easily compatible with microprocessors. However, this might not

always be the case.

But the problem often arises when external peripherals are connected as I/O devices. A slow I/O device won’t be

able to transfer data at a satisfactory rate whenever the microprocessor requests for data transfer. And usually, the

peripheral devices do have slower transfer rates than the processor. Maybe the processor might send two units of

information per second, but the external device might only accept 1 unit of information per second. Or conversely,

perhaps the external device expects quicker transfers, but our microprocessor might be sending information a bit

slower.

This might lead to severe data losses, or the devices might get damaged, or there might even be chances for the

system to slow down all over, thus affecting the overall efficiency of the system.

To avoid this problem, a number of data transfer techniques have been devised.

Since constant communication is required between the external device and the processor, these data transfer

techniques play a crucial role in the efficient functioning of the system with the externally connected devices.

Classification of Data Transfer Schemes

We can broadly classify the data transfer schemes into two modes – Serial Data Transfer and Parallel Data Transfer.

Classification of the data transfer techniques in 8085

 MICROPROCESSORS AND PERIPHERAL DEVICES 44

Our device, the Intel 8085 Microprocessor, is a parallel device. Thus, it transfers 8 bits of information

simultaneously over 8 data lines in the parallel I/O mode. But sometimes, there are instances where using this data

transfer technique might be just theoretical or impossible to apply. Using parallel data transfer can be expensive if

communication is to take place over vast distances. Also, if the device, on the other hand, follows the protocol of

serial communication only, then it is impossible to use parallel mode.

Difference between Parallel Data Transfer and Serial Data Transfer

As discussed earlier, we can broadly classify data transfer schemes into parallel data transfer techniques and serial

data transfer techniques. Let us understand the differences between them.

SERIAL DATA TRANSFER TECHNIQUES PARALLEL DATA TRANSFER TECHNIQUES

Under this scheme, the data is transferred one bit at a

time.

Under this scheme, the data is transferred several bits at

the same time.

It is a slower mode of data transfer. Data is transferred much quicker.

Serial data transfer is preferred when data is to be sent

over a long distance and the cost of cables would be too

expensive.

Parallel data transfer is the preferred technique for short-

distance communication.

For this mode, the transmitter first performs parallel – to

– serial conversion and the serial – to – parallel

conversion at the receiver.

No such conversions are required at both the

transmission and reception endpoints.

This mode requires a single line to transfer information. This mode requires multiple lines for data transfer.

Noise and errors are much lesser. As multiple bits are transmitted at the same time, there is

scope for more error and noise.

Cables used for serial communication are much thinner,

longer, and very economical.

Here, the cables are much shorter, and thicker compared

to the Serial communication cables.

Parallel Data Transfer Techniques

We know that under the parallel data transfer scheme, multiple data bits can be transmitted at the same time. Thus,

for the Intel 8085, 8 bits of data are sent all together using eight parallel lines. Let us go through the different types

of parallel data transfer schemes. We have:

1. Programmed I/O Data Transfer

2. Interrupt Driven I/O Data Transfer

3. Device or Direct Memory Access (DMA) Data Transfer

Let us study each of these transfer schemes in detail.

Programmed I/O Data Transfer

This is a straightforward scheme under parallel data transfer mechanisms. This mode is generally preferred for

simple, small microprocessor systems where speed is critical.

This method can work under the synchronous and asynchronous mode, depending on the speed and architecture of

the I/O devices.

 MICROPROCESSORS AND PERIPHERAL DEVICES 45

We also prefer this method when there is a small amount of information to be exchanged between the

microprocessor and other devices that are placed near to the microprocessor. Example: Computer, printer, etc.

Using the IN and OUT instructions, data transfer is carried out between the microprocessor and I/O devices.

The processor reads the data from an input port or input device using the IN command. The processor sends data

out from the CPU to the output port or the output device using the OUT instruction.

Thus, as the speeds of the processor and external device match, the data transferring process is carried out using the

IN and OUT instructions.

Synchronous Data Transfer Method

The word ‘Synchronous‘means ‘taking place at the same time.’

Thus, to establish communication between our processor and the device, we need to set a common clock pulse. This

common pulse synchronizes the peripheral device with the 8085 microprocessor.

This method is used when the speed of the microprocessor, Intel 8085, in this case, and the external peripheral

device match with each other.

If the device is ready to send data, it can indicate via the READY pin of 8085. Once the speeds match, the data

transfer immediately begins, once a signal is issued by the microprocessor to begin transferring. The microprocessor

need not wait for an extended period because of the matching speeds.

This technique of data transfer is seldom used to communicate with I/O devices though. Because I/O devices

compatible with the microprocessor’s speed are usually not found.

Hence, this method of data transfer is most commonly employed for communicating with compatible memory

devices.

Asynchronous Data Transfer Method

When the speed of the I/O device is slower than that of the microprocessor, we prefer the Asynchronous Data

Transfer Method. As the speeds of both the devices differ, the I/O device’s internal timing is entirely independent of

the microprocessor.

Thus, they are termed to be ‘asynchronous‘from each other. The term asynchronous means ‘at irregular intervals.’

We implement the Asynchronous Data Transfer Method using the handshaking policy. But how is this method

applied? And what happens next?

Under the handshaking method, the microprocessor and I/O device exchange a few signals before beginning the

transfer of data between them.

 MICROPROCESSORS AND PERIPHERAL DEVICES 46

Handshaking Protocol

Let us understand the flowchart of the handshake protocol.

• First, the microprocessor raises a ready signal and sends it to the I/O device, which is connected to it.

• The status of the I/O device is continually checked to see it is prepared for data transferring.

• If the device is not ready, it is checked again and again until the device signals it is ready.

• Once the device is ready, the data transfer begins from the microprocessor to the I/O device.

But how does the I/O device inform the microprocessor that it is ready for data transfer? This is done by the

‘ACK’ (Acknowledge) Signal. Also known as the handshake signal.

 MICROPROCESSORS AND PERIPHERAL DEVICES 47

The microprocessor first checks the readiness of the I/O device continually. Once the I/O device is ready to accept

data from the microprocessor, it sends an ACK signal to the microprocessor. This indicates the microprocessor that

the device is all set for the reception of data. Now the data transmission can finally take place.

What happens if the opposite is supposed to happen? What if the I/O device has to submit information to the

microprocessor?

In such a situation, the I/O device issues the ready signal back to 8085, informing it that it is ready to send data to

the processor. In response to this ready signal, a valid data signal is sent by the 8085 to the I/O device, and then the

valid information is put on the common data bus for the data transfer.

We can conclude by saying that under the Programmed I/O Data Transfer method, the microprocessor is always

busy checking the status of the slower I/O device continuously for sharing data. Thus, some amount of time is

 MICROPROCESSORS AND PERIPHERAL DEVICES 48

wasted on the microprocessor’s behalf. Additionally, this method of data transfer is used by I/O devices and slow

external memory peripherals.

Interrupt Driven I/O Data Transfer

The Programmed I/O Data Transfer, unfortunately, wastes a lot of time. Thus, the Interrupt Driven I/O Data

Transfer is a much better option. Here, no extra time of the microprocessor is wasted in waiting for a response/signal

from the external device. Under this method, the I/O device informs the microprocessor about its readiness, only

when it is ready. This is accomplished by interrupting the Intel 8085.

To begin with, the microprocessor initiates the transfer of data by sending a request to the external device to be ‘get

ready.’

Following this, the processor continues working normally, executing the original program rather than wasting its

cycles by keeping a check on the status of the external I/O device.

Once the I/O device is all set to transfer information, it sends a control signal to the 8085 to inform its readiness.

This control signal is called the Interrupt (INTR) signal.

Once the INTR signal is received by 8085, it responds to it by submitting an INTR acknowledgment signal back to

the external I/O device.

When the I/O device gets the acknowledgment, both the devices are now prepared for the data transfer. The

microprocessor completes the execution of the current instruction, then suspends the job. It saves all the contents

and the status of the PC (Program Counter) into the stack memory and then proceeds with the subroutine program.

This subroutine program for the raised interrupt is called the Interrupt Service Subroutine (ISR) program.

This ISR first saves the status of our processor into the stack.

Once the data transfer is completed by executing the necessary instructions, the ISR restores the previous processor

status and continues with the normal execution of the main program.

 MICROPROCESSORS AND PERIPHERAL DEVICES 49

There may be different types of interrupt requesting configurations that might arise when the I/O devices are

interfaced with the Intel 8085. They are:

1. Single Interrupt System

2. Multi Interrupt System

Under the Single Interrupt System, only one interrupt wire/line is available with the processor to which multiple I/O

devices are to be connected to.

Multiple Interrupt System

If the microprocessor has multiple interrupt terminals and to each interrupt terminal, one I/O device is to be

connected, it is known as the multiple interrupt system.

Here, the total number of external devices to be linked with the interrupt wires/lines should be either equal to or

lesser than the total number of interrupt terminals. Thus, one device is connected at a time to each level of the

interrupt.

When a device interrupts the microprocessor, the processor immediately recognizes which device has raised the

interrupt signal and identifies the location in the memory where the required subroutine is stored. This kind of

interrupt scheme is referred to as a Vectored Interrupt.

Device or Direct Memory Access (DMA) Data Transfer

In the two schemes discussed earlier, the transfer of information between the I/O device and the mass storage

device/memory is via the Accumulator register. But if there is a bulk amount of data to be transferred between the

I/O device and the microprocessor, then these methods are unworthy of the investment being put into them, and

even time – consuming.

To overcome such circumstances, the Direct Memory Access Data Transfer is put into use. This is an ideal method

used for data transfer of a considerable amount between the microprocessor and the I/O device. It is also considered

the fastest data transfer scheme.

But what makes it different from the previous two methods?

In the DMA scheme, the data is transferred between the I/O device (or DMA controller, a special IC) and the

external memory directly without having any interference by the accumulator register. The processor gives up its

control over the address bus as well as the data bus to the I/O device or DMA controller, thus aiding the exchange of

information between the source and the destination directly.

We will now understand the working principle of the Direct Memory Access Data Transfer method.

 MICROPROCESSORS AND PERIPHERAL DEVICES 50

Direct Memory Access Data Transfer

First of all, we need to inform the microprocessor before beginning the process. For this, an I/O device first sends a

request to a DMA controller using the DMARQ signal, which in turn forwards it to the processor in the form of a

HOLD signal.

Once such a request is received by the microprocessor, it ceases its control over the address bus and data bus. It then

informs the DMA Controller of the situation by sending an acknowledgment signal using the HLDA command.

The controller then informs the external peripheral by sending a DMACK signal.

The DMA controller then gains control over the two buses and monitors the transfer of information between the two

locations (Memory and I/O).

Once the entire data transfer between the I/O device and the external memory gets over, the DMA Controller

withdraws its request for using the data and address bus by disabling the HOLD and DMACK signals, and thus the

microprocessor gains control over them again.

There are three types of techniques under the Direct Memory Access Data Transfer:

1. Burst or block transfer DMA

2. Cycle steal or the single-byte transfer DMA

3. Transparent or hidden DMA

Burst or Block Transfer DMA

This is the fastest DMA mode of data transfer.

In the Burst mode, at least two or more bytes of data are transferred continuously i.e., the entire block of data is

transferred in a straight sequence. Here, the microprocessor is disconnected from the main system during the data

transfer, and thus, the processor is unable to execute any program on its own during the information transfer.

In fact, in this mode, the DMA controller acts as a Master.

 MICROPROCESSORS AND PERIPHERAL DEVICES 51

If there are about N number of bytes to be transferred, then N number of machine cycles will be adopted into the

working of the processor.

The DMA controller first sends a HOLD signal to the microprocessor to request access for the system’s buses, and

in turn, wait for the HLDA signal.

One the HLDA signal is received; the DMA controller gets access over the system bus and sends one byte of

information.

Once a single byte is sent, the memory address is incremented, the counter is decremented, and then the next byte is

sent.

Thus, following this technique, all data bytes are transferred between memory and I/O devices. Once all the

information is sent, the DMA controller disables the HOLD signal.

It then enters into the slave mode.

This method is generally used for loading data files or important programs into the memory. However, it keeps the

CPU inactive for relatively long periods.

Cycle steal or Single-Byte transfer DMA

In this mode, only a single byte is transferred at a time.

This is thus much slower than burst DMA.

In the cycle-steal DMA, The DMA controller sends a HOLD signal to the microprocessor.

It then waits for the HLDA signal in return.

Once the HLDA signal is received, it gets access over the system buses and executes one DMA cycle only.

After this transfer, the HOLD signal is disabled, and it enters into the slave mode.

The processor thus gets back its control over the address and data bus and continues executing the following

machine cycle.

However, if the counter has not touched down to zero, and there is still data to be exchanged, then the DMA

controller sends a HOLD signal again to the processor, and sends the next byte of the information block.

Thus, only one DMA cycle takes place between every two machine cycles of the processor, and the execution speed

of the instructions in the microprocessor falls back a bit.

 MICROPROCESSORS AND PERIPHERAL DEVICES 52

The DMA Controller obtains the access for the system buses by repeatedly issuing the requests using the Bus

Request (BR) and Bus Grant (BG) signals until the entire data block has been transferred.

Though the information bytes are not transferred as fast as in the Burst mode, the only advantage of the cycle-steal

mode is that the CPU does not remain idle for long durations of time, as in the burst DMA mode. This method is

mainly used in controllers which are used in monitoring data in real-time.

Transparent or Hidden DMA transfer

The Hidden DMA Transfer method is considered the slowest among all the other DMA transfers.

Here, the microprocessor executes some of its states during which it floats the data bus and the address bus.

In these states, the microprocessor gets isolated from the main system bus.

In this isolation, the DMA controller transfers the information byte between the external peripherals and the

memory. This, thus, becomes transparent to the microprocessor.

The instruction execution speed of the microprocessor does not get reduced. However, this DMA mode requires

extra logic to sense the states in which the processor is floating the buses.

This mode is favored at the time when we do not want the CPU to stop executing its main program, as the data

transfer is performed only when the CPU does not need the system bus.

Nevertheless, the hardware needed to check such states can be pretty complex and a little too expensive as well.

Serial Data Transfer Techniques

Under the serial data transfer mode, a single bit of information/data is transmitted on a single line at a time. But how

would the 8085 accomplish this?

An 8-bit parallel word is first converted into a stream of 8 serial bits, with the help of a parallel – to – serial

converter. In the same way, during the serial reception of information bits, the microprocessor receives a stream of

separate 8 bits, one by one, which are later converted to an 8-bit parallel word with the help of a serial – to – parallel

converter.

Serial data communication can be categorized on the basis of how data transmission occurs. These are:

 MICROPROCESSORS AND PERIPHERAL DEVICES 53

Simplex: In simplex communication, the hardware is set such that the data exchange takes place in only one

direction. Example: Computer to Printer communication.

Half Duplex: The half-duplex communication allows the data exchange in both directions, but not at the same time.

Example: Walkie talkie.

Full Duplex: It permits the information transfer in both directions at the same time. Example: Telephone lines.

The information in serial communication can be transmitted in two ways. They are:

1. Synchronous Serial Data Transfer

2. Asynchronous Serial Data Transfer

Let us study each of these transfer schemes in detail.

Asynchronous Serial Data Transfer

The Asynchronous formats are more character-oriented. Here, the bits/character/data word are sent together at a

constant rate, but the characters can arrive at any rate i.e., asynchronously, provided that these do not overlap. If no

characters are being transmitted over the line, the line stays HIGH at Logic 1 called MARK. Logic 0 is called

SPACE.

At the transmitter end

When a character (data bits) is to be sent, it is indicated by a start bit, which is always a logic 0 signal (coming down

from a logic 1).

This signal then synchronizes the transmitter and the receiver.

Following this bit, the information bits are sent one bit at a time, with the Least Significant Bit sent first (D0-D7).

The size of the character (number of bits) can vary and depends on the system requirement.

Once all information is sent, a parity bit might be sent at the end.

After that, the stop bit(s) is sent, which is a high signal.

This stop bit indicates the end of transmission of the information bits.

The start and stop bit carry no information but are just indications for the commencement and end of data exchange.

The combination of the start bit, the character bits, and stop bits is known as a frame.

This mode is used in the low-speed transmission of information, where speed might be less than 20kbps.

 MICROPROCESSORS AND PERIPHERAL DEVICES 54

At the receiver end

The output of the transmitter is the input to the receiver.

The receiver is always on the lookout for the high signal transitioning into a low signal.

Once it detects a high signal that transitions into a low, it considers the low bit to be the start bit and only then starts

accepting data.

Once all the data is transferred, the receiver waits for the stop bit to restart looking for the next start bit.

Synchronous Serial Data Transfer

In the asynchronous data transmission method, the start and stop bits included in every frame are the wasted

overhead bytes, which reduces the overall character rate.

We can avoid using the start and stop bits for every frame of data by synchronizing the transmitter and the receiver

instead. Once synchronized, any size of data can be transferred serially.

This synchronization can be done by placing synchronous bits in the place of the start and stop bits.

Such a protocol is known as synchronous serial communication.

These synchronous bits are transferred by the transmitter. And at the receiver end, the receiver waits to detect these

two or three sync bits.

Once detected, the transmitter and receiver are said to be in sync and data transmission begins.

Characters are received at a constant rate here, and the data transfer takes place in blocks.

Synchronous serial data transfer is ideal for high-speed transmission of information.

If no data bits exist, the transmitter still keeps transmitting the sync bits to keep the synchronization intact.

 MICROPROCESSORS AND PERIPHERAL DEVICES 55

 MICROPROCESSORS AND PERIPHERAL DEVICES 56

UNIT-8 Peripheral devices

8255 PPI

8255 is a programmable I/O device that acts as interface between peripheral devices and the microprocessor for

parallel data transfer. 8255 PPI (programmable peripheral interface) is programmed in a way so as to have transfer

of data in different conditions according to the need of the system.

In 8255, 24 pins are assigned to the I/O ports. Basically it has three, 8-bit ports that are used for simple or interrupt

I/O operations.

The three ports are Port A, Port B and Port C and as each port have 8 lines, but the 8 bits of port C is divided into 2

groups of 4-bit each. These are given as port C lower i.e., PC3 – PC0 and port C upper i.e., PC7 – PC4. And are

arranged in group of 12 pins each thus designated as Group A and Group B.

The two modes in which 8255 can be programmed are as follows:

Bit set/reset mode

I/O mode

The bits of port C gets set or reset in the BSR mode. The other mode of 8255 i.e., I/O mode is further classified into:

Mode 0: Simple input/output

Mode 1: Input output with handshaking

Mode 2: Bidirectional I/O handshaking

Mode 1 and Mode 2 both are same but the only difference is mode 1 does not support bidirectional handshaking.

This means if 8255 is programmed to mode 1 input, then it will particularly be connected to an input device and

performs the input handshaking with the processor.

But if it is programmed to mode 2 then due to bidirectional nature, the PPI will perform both input and output

operation with the processor according to the command received.

Modes of Operation

As we have already discussed that 8255 has two modes of operation. These are as follows:

 MICROPROCESSORS AND PERIPHERAL DEVICES 57

Bit Set-Reset mode: When port C is utilized for control or status operation, then by sending an OUT instruction,

each individual bit of port C can be set or reset.

I/O mode: As we know that the I/ O mode is sub-classified into 3 modes. So, let us now discuss the 3 modes here.

Mode 0: Input/output mode

This mode is the simple input output mode of 8255 which allows the programming of each port as either input or

output port. The input/output feature of mode 0 includes:

• It does not support handshaking or interrupt capability.

• The input ports are buffered while outputs are latched.

Mode 1: Input/output with handshaking

Mode 1 of 8255 supports handshaking with the ports programmed as either input or output mode. We know that it is

not necessary that all the time the data is transferred between two devices operating at same speed. So, handshaking

signals are used to synchronize the data transfer between two devices that operates at different speeds.

The figure below shows the data transferring between CPU and an output device having different operating speeds:

• Here STB signal is used to inform the output device that data is available on the data bus by the processor.

• Here port A and port B can be separately configured as either input or output port.

• Both the port utilizes 3-3 lines of port C for handshaking signals. The rest two lines operates as input/output

port.

• It supports interrupt logic.

• The data at the input or output ports are latched.

•

Mode 2: Bidirectional I/O port with handshaking

In this mode, the ports can be utilized for the bidirectional flow of information by handshaking signals. The pins of

group A can be programmed to acts as bidirectional data bus and the port C upper (PC7 – PC4) are used by the

handshaking signal. The rest 4 lower port C bits are utilized for I/O operations.

 MICROPROCESSORS AND PERIPHERAL DEVICES 58

As the data bus exhibits bidirectional nature thus when the peripheral device request for a data input only then the

processor load the data in the data bus. Port B can be programmed in mode 0 and 1. And in mode 1 the lower bits of

port C of group B are used for handshaking signals.

So, from the above discussion it is clear that how interfacing of peripheral devices is performed with the processor.

What is Programmable Interval Timer?

The programmable Interval Timers are specially designed by Intel called as 8253 constructed for microprocessors to

perform timing and counting functions by using three 16-bit registers. Each counter has 2 input pins, i.e. Clock &

Gate, and 1 pin is for “OUT” output. To perform a counter, a 16-bit count is loaded in its register. On giving

command, it begins to decrease the count until it reaches 0, then it produces a pulse that can be used to interrupt the

CPU.

• Its operating frequency is 0 - 2.6 MHz.

• It uses N-MOS technology.

• Read-Back command is not available.

• Reads and writes of the same counter cannot be interleaved.

Explain the operational modes of 8253?

8253 consists of 6 different modes which perform specific operations. In this chapter, we will discuss these

operational modes.

Mode 0 ─ Interrupt on Terminal Count

It helps in generating an interrupt to the microprocessor after a specific interval.

Initially the output becomes low after the mode is set. The output becomes LOW when the count value is loaded into

the counter.

The output becomes low as the loaded count value decreases per every cycle. This process continues till the terminal

count is reached to zero and the output goes HIGH and is considered as an interrupt. It will remain high until a new

count is reloaded.

The GATE signal would be high for normal counting. When GATE goes low, counting gets terminated and the

current count will be latched till the GATE goes high again.

Mode 1 – Programmable One Shot

 MICROPROCESSORS AND PERIPHERAL DEVICES 59

It can be used as a mono stable multi-vibrator.

The gate input is used as a trigger input and the output becomes high in this mode.

The output remains high at the end of the count that is loaded and a trigger is applied.

Mode 2 – Rate Generator

The output remains normally high after initialization.

Whenever the count comes to zero, generation of low pulse occurs at the output and reloading of the counter will

take place.

Mode 3 – Square Wave Generator

This mode acts similar to that of mode2 except the output remains low for half of the timer period and other half of

the period it should be high.

Mode 4 − Software Triggered Mode

In this mode, the output would remain high until the timer has to be counted to zero, at certain point the output

would pulse low and then would go high again.

The count will become latched when the GATE signal goes LOW.

At the end of the count, the output will go low for one clock cycle then it would go HIGH. This low pulse can be

used as a strobe.

Mode 5 – Hardware Triggered Mode

This mode produces a strobe with response to an externally generated signal.

This mode acts similar to that of mode 4 except that the counting was initiated by a signal at the gate input, which

implies that it is hardware triggered instead of software triggered.

After it gets initialized, the output goes high.

When the count was reached at the end, the output would go low for one clock cycle.

 MICROPROCESSORS AND PERIPHERAL DEVICES 60

Microprocessor - 8257 DMA Controller

DMA stands for Direct Memory Access. It is designed by Intel to transfer data at the fastest rate. It allows the device

to transfer the data directly to/from memory without any interference of the CPU.

Using a DMA controller, the device requests the CPU to hold its data, address and control bus, so the device is free

to transfer data directly to/from the memory. The DMA data transfer is initiated only after receiving HLDA signal

from the CPU.

How DMA Operations are performed?

Following is the sequence of operations performed by a DMA −

Initially, when any device has to send data between the device and the memory, the device has to send DMA request

(DRQ) to DMA controller.

The DMA controller sends Hold request (HRQ) to the CPU and waits for the CPU to assert the HLDA.

Then the microprocessor tri-states all the data bus, address bus, and control bus. The CPU leaves the control over

bus and acknowledges the HOLD request through HLDA signal.

Now the CPU is in HOLD state and the DMA controller has to manage the operations over buses between the CPU,

memory, and I/O devices.

Features of 8257

Here is a list of some of the prominent features of 8257 −

• It has four channels which can be used over four I/O devices.

• Each channel has 16-bit address and 14-bit counter.

• Each channel can transfer data up to 64kb.

• Each channel can be programmed independently.

• Each channel can perform read transfer, write transfer and verify transfer operations.

• It generates MARK signal to the peripheral device that 128 bytes have been transferred.

• It requires a single phase clock.

• Its frequency ranges from 250Hz to 3MHz.

• It operates in 2 modes, i.e., Master mode and Slave mode.

 MICROPROCESSORS AND PERIPHERAL DEVICES 61

8257 Pin Description

The following image shows the pin diagram of a 8257 DMA controller –

DRQ0−DRQ3

These are the four individual channel DMA request inputs, which are used by the peripheral devices for using DMA

services. When the fixed priority mode is selected, then DRQ0 has the highest priority and DRQ3 has the lowest

priority among them.

DACKo − DACK3

These are the active-low DMA acknowledge lines, which updates the requesting peripheral about the status of their

request by the CPU. These lines can also act as strobe lines for the requesting devices.

Do − D7

These are bidirectional, data lines which are used to interface the system bus with the internal data bus of DMA

controller. In the Slave mode, it carries command words to 8257 and status word from 8257. In the master mode,

 MICROPROCESSORS AND PERIPHERAL DEVICES 62

these lines are used to send higher byte of the generated address to the latch. This address is further latched using

ADSTB signal.

IOR

It is an active-low bidirectional tri-state input line, which is used by the CPU to read internal registers of 8257 in the

Slave mode. In the master mode, it is used to read data from the peripheral devices during a memory write cycle.

IOW

It is an active low bi-direction tri-state line, which is used to load the contents of the data bus to the 8-bit mode

register or upper/lower byte of a 16-bit DMA address register or terminal count register. In the master mode, it is

used to load the data to the peripheral devices during DMA memory read cycle.

CLK

It is a clock frequency signal which is required for the internal operation of 8257.

RESET

This signal is used to RESET the DMA controller by disabling all the DMA channels.

Ao - A3

These are the four least significant address lines. In the slave mode, they act as an input, which selects one of the

registers to be read or written. In the master mode, they are the four least significant memory address output lines

generated by 8257.

CS

It is an active-low chip select line. In the Slave mode, it enables the read/write operations to/from 8257. In the

master mode, it disables the read/write operations to/from 8257.

A4 - A7

These are the higher nibble of the lower byte address generated by DMA in the master mode.

READY

It is an active-high asynchronous input signal, which makes DMA ready by inserting wait states.

HRQ

This signal is used to receive the hold request signal from the output device. In the slave mode, it is connected with a

DRQ input line 8257. In Master mode, it is connected with HOLD input of the CPU.

HLDA

It is the hold acknowledgement signal which indicates the DMA controller that the bus has been granted to the

requesting peripheral by the CPU when it is set to 1.

 MICROPROCESSORS AND PERIPHERAL DEVICES 63

MEMR

It is the low memory read signal, which is used to read the data from the addressed memory locations during DMA

read cycles.

MEMW

It is the active-low three state signal which is used to write the data to the addressed memory location during DMA

write operation.

ADST

This signal is used to convert the higher byte of the memory address generated by the DMA controller into the

latches.

AEN

This signal is used to disable the address bus/data bus.

TC

It stands for ‘Terminal Count’, which indicates the present DMA cycle to the present peripheral devices.

MARK

The mark will be activated after each 128 cycles or integral multiples of it from the beginning. It indicates the

current DMA cycle is the 128th cycle since the previous MARK output to the selected peripheral device.

Vcc

It is the power signal which is required for the operation of the circuit.

 MICROPROCESSORS AND PERIPHERAL DEVICES 64

UNIT-9 Architecture of 8086 Microprocessor

Architecture of 8086

Unlike microcontrollers, microprocessors do not have inbuilt memory. Mostly Princeton architecture is

used for microprocessors where data and program memory are combined in a single memory interface.

Since a microprocessor does not have any inbuilt peripheral, the circuit is purely digital and the clock speed

can be anywhere from a few MHZ to a few hundred MHZ or even GHZ. This increased clock speed

facilitates intensive computation that a microprocessor is supposed to do.

We will discuss the basic architecture of Intel 8086 before discussing more advanced microprocessor

architectures.

Internal architecture of Intel 8086:

Intel 8086 is a 16 bit integer processor. It has 16-bit data bus and 20-bit address bus. The lower 16-bit

address lines and 16-bit data lines are multiplexed (AD0-AD15). Since 20-bit address lines are available,

8086 can access up to 2 20 or 1 Giga byte of physical memory.

The basic architecture of 8086 is shown below.

Fig Basic Architecture of 8086 Microprocessor

 MICROPROCESSORS AND PERIPHERAL DEVICES 65

The internal architecture of Intel 8086 is divided into two units, viz., Bus Interface Unit (BIU) and

Execution Unit (EU).

Bus Interface Unit (BIU)

The Bus Interface Unit (BIU) generates the 20-bit physical memory address and provides the interface with

external memory (ROM/RAM). As mentioned earlier, 8086 has a single memory interface. To speed up the

execution, 6-bytes of instruction are fetched in advance and kept in a 6-byte Instruction Queue while other

instructions are being executed in the Execution Unit (EU). Hence after the execution of an instruction, the

next instruction is directly fetched from the instruction queue without having to wait for the external

memory to send the instruction. This is called pipe-lining and is helpful for speeding up the overall

execution process.

8086's BIU produces the 20-bit physical memory address by combining a 16-bit segment address with a

16-bit offset address. There are four 16-bit segment registers, viz., the code segment (CS), the stack

segment (SS), the extra segment (ES), and the data segment (DS). These segment registers hold the

corresponding 16-bit segment addresses. A segment address is the upper 16-bits of the starting address of

that segment. The lower 4-bits of the starting address of a segment is always zero. The offset address is

held by another 16-bit register. The physical 20-bit address is calculated by shifting the segment address 4-

bit left and then adding that to the offset address.

For Example:

Code segment Register CS holds the segment address which is 4569 H

Instruction pointer IP holds the offset address which is 10A0 H

The physical 20-bit address is calculated as follows.

Segment address : 45690 H

Offset address :+ 10A0 H

Physical address : 46730 H

 Execution Unit [EU]:

The execution unit of 8086 Internal Architecture tells the BIU from where to fetch instructions or data,

decodes instructions and executes instructions. It contains

 Control Circuitry

 Instruction Decoder

 Arithmetic Logic Unit (ALU)

 Flag Register

 General Purpose Registers

 Pointers and Index Registers

 The Execution unit is responsible for decoding and executing all instructions. • The EU extracts

instructions from the top of the queue in the BIU, decodes them, generates operands if necessary, passes

them to the BIU and requests it to perform the read or write bys cycles to memory or I/O and perform the

 MICROPROCESSORS AND PERIPHERAL DEVICES 66

operation specified by the instruction on the operands. • During the execution of the instruction, the EU

tests the status and control flags and updates them based on the results of executing the instruction.

Minimum and Maximum mode

Minimum and Maximum Modes: • the minimum mode is selected by applying logic 1 to the MN / MX#

input pin. This is a single microprocessor configuration.

The maximum mode is selected by applying logic 0 to the MN / MX# input pin. This is a multi micro

processors configuration.

Minimum mode Maximum mode

In minimum mode there can be only one

processor i.e. 8086.

In maximum mode there can be multiple

processors with 8086, like 8087 and 8089.

MN/MX MN/MX is 1 to indicate minimum

mode.

MN/MX MN/MX is 0 to indicate maximum mode.

ALE for the latch is given by 8086 as it is the only

processor in the circuit.

ALE for the latch is given by 8288 bus controller

as there can be multiple processors in the circuit.

DEN and DT/R for the trans-receivers are given

by 8086 itself.

and DT/R for the trans-receivers are given by 8288

bus controller.

Direct control signals M/IO, RD and WR are

given by 8086.

Instead of control signals, each processor generates

status signals called S2, S1 and S0.

Control signals M/IO, RD and WR are decoded

by a 3:8 decoder like 74138.

Status signals S2, S1 and S0are decoded by a bus

controller like 8288 to produce control signals.

INTA is given by 8086 in response to an interrupt

on INTR line.

INTA is given by 8288 bus controller in response

to an interrupt on INTR line.

HOLD and HLDA signals are used for bus

request with a DMA controller like 8237.

RQ/GT,lines are used for bus requests by other

processors like 8087 or 8089.

 MICROPROCESSORS AND PERIPHERAL DEVICES 67

Minimum mode Maximum mode

The circuit is simpler. The circuit is more complex.

Multiprocessing cannot be performed hence

performance is lower.

As multiprocessing can be performed, it can give

very high performance.

Pin Diagram 8086 :

 MICROPROCESSORS AND PERIPHERAL DEVICES 68

Pin description for 8086 Microprocessor

AD0 to AD15

These lines are multiplexed unidirectional address and status bus. What this means is that at time T1, they carry

status signals and in remaining cycles, they carry status signals.

• S6 is used as bus master, which handles the internal bus control.

• S5 is used as interrupt flag.

• S4 and S3 are used to select the segment out of the four segments.

S4 S3 Segment selected

0 0 ES

0 1 SS

1 0 CS

1 1 DS

BHE' / S7

BHE stands for Bus High Enable. It is an active low signal, i.e. it is active when it is low. It is used to indicate the

transfer of data over the higher order data bus (D8 to D15).

BHE' decides whether the data bus will carry 16-bit data or 8-bit data. When BHE’ is enabled (i.e. 0), then the bus

will carry 16-bit data, else only 8-bit data through the lower order data bus lines. It is multiplexed with status pin S7.

RD'

It is a read signal used for read operation. It is also an active low signal.

READY

This is an acknowledgment signal from the slower I/O devices or memory. When high, it indicates that the device is

ready to transfer data, else the microprocessor is in the wait state.

 MICROPROCESSORS AND PERIPHERAL DEVICES 69

RESET

By using this pin, the program control returns to FFFF0H.

INTR

This pin is used to receive an interrupt request signal. It is a type of maskable interrupt.

NMI

This is used for Non-Maskable Interrupt Request.

GND

There are two ground pins in the 8086, pin 1 and pin 20.

VCC

The pin 40 is for voltage input.

MN / MX'

This pin is used for minimum or maximum mode of the microprocessor. When this pin is 1, the microprocessor

works in minimum mode, and when the pin is at 0, the maximum mode is followed.

Minimum and maximum Mode Pins

Total 8 pins, from Pin 24 to pin 31 work differently for different modes (maximum or minimum).

TEST'

This is also an active low signal. This pin is used for wait instruction when the 8086 is connected with the 8087

microprocessor.

CLK

This pin tells about the clock pulse.

 MICROPROCESSORS AND PERIPHERAL DEVICES 70

Short Question /Answer

1. What is Microprocessor? Give the power supply & clock frequency of 8085?

Ans: A microprocessor is a multipurpose, programmable logic device that reads binary instructions from

a storage device called memory accepts binary data as input and processes data according to those

instructions and provides result as output. The power supply of 8085 is +5V and clock frequency in

3MHz.

2. List few applications of microprocessor-based system.

Ans: It is used:

i. For measurements, display and control of current, voltage, temperature, pressure, etc.

ii. For traffic control and industrial tool control.

iii. For speed control of machines.

3. What are the functions of an accumulator?

Ans: The accumulator is the register associated with the ALU operations and sometimes I/O operations. It

is an integral part of ALU. It holds one of data to be processed by ALU. It also temporarily stores the

result of the operation performed by the ALU.

4. List the 16 – bit registers of 8085microprocessor.

Ans: Stack pointer (SP) and Program counter (PC).

5. List the allowed register pairs of8085.

Ans:

▪ B-C register pair

▪ D-E register pair

▪ H-L register pair

6 . What is an Opcode?

Ans: The part of the instruction that specifies the operation to be performed is called the operation code

or opcode.

7. What is the function of IO/M signal in the 8085?

Ans: It is a status signal. It is used to differentiate between memory locations and I/O operations. When

this signal is low (IO/M = 0) it denotes the memory related operations. When this signal is high (IO/M =

1) it denotes an I/O operation.

 MICROPROCESSORS AND PERIPHERAL DEVICES 71

8. What is an Operand?

Ans: The data on which the operation is to be performed is called as an Operand.

9. Define instruction cycle, machine cycle and T-state

Ans:-Instruction cycle is defined, as the time required completing the execution of an instruction.

Machine cycle is defined as the time required completing one operation of accessing memory, I/O or

acknowledging an external request. T cycle is defined as one subdivision of the operation performed in

one clock period

10. What is an instruction?

Ans:-An instruction is a binary pattern entered through an input device to command the microprocessor

to perform that specific function

11. What is the use of ALE

Ans:-The ALE is used to latch the lower order address so that it can be available in T2 and T3 and used

for identifying the memory address. During T1 the ALE goes high, the latch is transparent ie, the output

changes according to the input data, so the output of the latch is the lower order address. When ALE goes

low the lower order address is latched until the next ALE.

12. How many machine cycles does 8085 have, mention them

Ans: The 8085 have seven machine cycles. They are

• Opcode fetch

• Memory read

• Memory write

• I/O read

• I/O write

• Interrupt acknowledge

• Bus idle

13. Explain the signals HOLD, READY and SID

Ans: HOLD indicates that a peripheral such as DMA controller is requesting the use of address bus, data

bus and control bus. READY is used to delay the microprocessor read or write cycles until a slow

responding peripheral is ready to send or accept data.SID is used to accept serial data bit by bit

14. What is Program counter?

Program counter holds the address of either the first byte of the next instruction to be fetched for

execution or the address of the next byte of a multi byte instruction, which has not been completely

fetched. In both the cases it gets incremented automatically one by one as the instruction bytes get

fetched. Also Program register keeps the address of the next instruction.

 MICROPROCESSORS AND PERIPHERAL DEVICES 72

15 .What is clock frequency for 8085?

3 MHz is the maximum clock frequency for 8085.

16. What is Stack Pointer?

- Stack pointer is a special purpose 16-bit register in the Microprocessor, which holds the address of the

top of the stack.

17. What is Program counter?

- Program counter holds the address of either the first byte of the next instruction to be fetched for

execution or the address of the next byte of a multi byte instruction, which has not been completely

fetched. In both the cases it gets incremented automatically one by one as the instruction bytes get

fetched. Also Program register keeps the address of the next instruction.

18. Which Stack is used in 8085?

- LIFO (Last In First Out) stack is used in 8085.In this type of Stack the last stored information can be

retrieved first.

19. What are most common registers present in a microprocessor?

Accumulator registers, Data registers, Temporary registers, Instruction registers, Stack Pointer, Program

Counter and Condition Code Register.

20. Why is address bus unidirectional?

The address bus is unidirectional because the address is always given by the microprocessor, to address a

memory location of an I/O device. Only microprocessor can write a value onto address bus, I/O devices

can only read address bus.

21. Why is data bus bidirectional?

The data bus is bidirectional because it is used by microprocessor, memory units, and I/O devices for both

to transfer and receive data.

Old Question Paper Microprocessors and Peripherals Devices 1

4th Sem. / Computer Engg.

Subject: Microprocessors & Peripherals Devices/ Microp. & App.

(1) 170844/120844/31045/30834

SECTION-A

Note: Objectives questions. All questions are compulsory (10x1=10)

Q.1 Word size of 8085 is _______ bits.

Q.2 The size of PC is _______ bits.

Q.3 Name the format of instruction DAD D.

Q.4 Instruction cycle = fetch cycle + ______

Q.5 Write two instructions used for subroutine operation.

Q.6 Write the I/O address Space of 8085.

Q.7 Name non-maskable interrupt found in 8085.

Q.8 Name the Data transfer technique in which handshaking is used.

Q.9 Expand PPI.

Q.10 Name two functional units of 8086.

SECTION-B

Note: Very Short answer type questions. Attempt any ten parts 10x2=20

Q.11 List four functions of ALU.

Q.12 Name the general purpose registers of 8085.

Q.13 Name the interrupt pins of 8085.

Q.14 Define instruction cycle.

Q.15 Identify the machine cycles of instruction MOV A, M.

Q.16 List the formats of instruction.

Q.17 Write the arithmetic equation of the instruction ADD D.

Q.18 Write down the four differences between Edge triggered and level triggered interrupts.

Q.19 Write four differences between peripheral I/O and memory mapped I/O.

Q.20 Define DMA operation.

Q.21 Write the main advantage of interrupt driven data transfer technique.

Q.22 Define the function of BIU and EU in 8086.

SECTION-C

Note: Short answer type questions. Attempt any eight questions. 8x5=40

Q.23 Explain how control signals are generated for memory and I/O with suitable logic diagram.

Q.24 Describe the evolution of microprocessor and its impacts on society.

Q.25 Explain memory read machine cycle with suitable timing diagram.

Q.26 Illustrate arithmetic group of instructions with suitable examples referring to 8085.

Q.27 Why decoding of memory address is required in memory accessing? Explain the working of 3-to- 8 line

decoder with its diagram.

Old Question Paper Microprocessors and Peripherals Devices 2

Q.28 Classify the interrupts of 8085. Explain the steps to process the interrupt generated in 8085.

Q.29 Explain the control word format of 8255 and define the purpose of each bit.

Q.30 Differentiate asynchronous (handshake) mode of data transfer and interrupt driven data transfer.

Q.31 Write a program in assembly language to find largest of ten nos. stored at some memory locations.

Q.32 Differentiate minimum and maximum mode of configuration of 8086.

SECTION-D

Note: Long answer type questions. Attempt any three questions. 10x3=30

Q.33 Draw the pin diagram of 8085 and define the function of each pin.

Q.34 Explain programmed data transfer techniques with suitable diagrams.

Q.36 (a) Differentiate memory mapped I/O and peripheral I/O interfacing schemes.

 (b) Draw the block diagram of 8086.

Old Question Paper Microprocessors and Peripherals Devices 3

4th Sem. / Computer Engg.

Subject : Microprocessors and Peripherals Devices/ Microp.& App

SECTION-A

Note: Objective questions. All questions are compulsory. (10x1=10)

Q.1 Word size of 8085 is__________bits.

Q.2 Name the format of instruction DADD.

Q.3 What is the function of address bus?

Q.4 Write two instructions used for subroutine operation.

Q.5 Name the data transfer techniques.

Q.6 RST 7.5 is mask able interrupt (T/F).

Q.7 Name two functional units of 8086.

Q.8 Define stack.

Q.9 Define ALE.

Q.10 what is S/W interrupt.

Note: Very Short answer type questions. Attempt any ten questions. 10x2=20

Q.11 Name the interrupt pins of 8085.

Q.12 List four function of ALU.

Q.13 Write the arithmetic equation of the instruction ADD D.

Q.14 Explain peripheral I/O &memory mapped I/O.

Q.15 Define DMA operation.

Q.16 What is NOP?

Q.17 What is handshaking

Q.18 What is the function of Accumulator?

Q.19 Explain DMA.

Q.20 What is a buffer?

Q.21 What is assembler?.

Q.22 What is the function of O/P devices?

SECTION-C

Note: Short answer type questions. Attempt anyeight questions out of ten questions. 8x5=40

Q.23 Explain the evolution of microprocessor & its impacts on society.

Q.24 Classify the interrupts of 8085 in detail

Q.25 Differentiate minimum & maximum mode of configuration of 8086.

Q.26 Discuss various flags of 8085.

Q.27 Describe arithmetic group of instruction with suitable example referring to 8085.

Old Question Paper Microprocessors and Peripherals Devices 4

Q.28 Write the various application of microprocessor.

Q.29 Write down various addressing modes of 8085.

Q.30 What is memory interfacing?

Q.31 Draw timing diagram of memory read cycle.

Q.32 Differentiate between Hardware & Software interrupt.

SECTION-D

Note: Long answer type questions. Attempt any three questions out of four questions. 3x10=30

Q.33 Draw and discuss the pin diagram of 8085 in details.

Q.34 Explain programmed data transfer techniques with suitable diagrams.

Q.35 Discuss and draw the block diagram of 8086 in details.

Q.36 Write short note on the following:-

a) stack

b) Non-mask able interrupt.

