Lesson Plan

Name of Faculty : Sh. Paritosh Parashar

Discipline : ECE Semester : 3rd

Subject : Digital Electronics

Lesson Plan Duration: 16 weeks

Work load (Lecture /Practical) per week (in hours): Lectures—03, Practical—04

		Theory	•	Practical
Week	Lecture Day	Topic (Including Assignment/ Test	Practical Day	Topic
1 st	1	Introduction		Verification and interpretation of truth
	2	Distinction between analog and digital signal.		
	3	Applications and advantages of digital signals	1 st	tables for AND, OR, NOT NAND, NOR and Exclusive OR (EXOR) and Exclusive NOR (EXNOR) gates
2 nd	4	Assignment	2 nd	Realisation of logic functions with the help of NAND or NOR gates
	5	Binary		
	6	octal and hexadecimal number system		
3 rd	7	conversion from decimal and hexadecimal to binary and vice-versa	$3^{ m rd}$	To design a half adder using XOR and NAND gates and verification of its operation
	8	Binary addition and subtraction including binary points. 1's and 2's complement method of addition/subtraction.		
	9	Assignment		
	10	Concept of code, weighted and non-weighted codes	4 th	To design of a full adder circuit using XOR and NAND gates and verify its operation
4 th	11	examples of 8421, BCD, excess-3 and Gray code		
	12	Concept of parity, single and double parity and error detection		
5 th	13	Assignment	5 th	To design circuit for 7 segment display ICs
	14	Concept of negative and positive logic		
3	15	Definition, symbols and truth tables of NOT, AND, OR, NAND, NOR, EXOR Gates		
6 th	16	NAND and NOR as universal gates		Verification of truth
	17	Introduction to TTL and CMOS logic families		table for positive edge
	18	Assignment	6 th	triggered, negative edge triggered, level triggered IC flip-flops (At least one IC each of D latch, D flip-flop, JK flip-flops).
7 th	19	Logic Simplification	7 th	Verification of truth
	20	Postulates of Boolean algebra, De Morgan's Theorems		table for positive edge triggered, negative edge
	21	Implementation of Boolean (logic) equation		triggered, level

		with gates		triggered IC flip-flops (At least one IC each of D latch, D flip-flop, JK flip-flops).
8 th	22	Karnaugh map (upto 4 variables) and simple application in developing combinational logic circuits	8 th	Verification of truth table for encoder and
	23	Half adder and Full adder circuit		decoder ICs
	24	design and implementation		
9 th	25	4 bit adder circuit	9th	Verification of truth table for Multiplexers and x and De- Multiplexers
	26	Decoders, Multiplexers, Multiplexers and Encoder		
	27	Four bit decoder circuits for 7 segment display and decoder/driver ICs		
10 th -	28	Basic functions and block diagram of MUX and DEMUX with different ICs	$10^{ m th}$	To design a 4 bit SISO, SIPO, PISO, PIPO shift registers using JK/D flip flops and verification of their operation
	29	Basic functions and block diagram of Encoder		
	30	Concept and types of latch with their working and applications		
11 th	31	Operation using waveforms and truth tables of RS, T, D, Master/Slave JK flip flops	11 th	To design a 4 bit ring counter and verify its operation.
	32	Difference between a latch and a flip flop		
	33	Introduction to Asynchronous and Synchronous counters		
12 th	34	Binary counters	12 th	Use of Asynchronous Counter ICs (7490 or 7493)
	35	Divide by N ripple counters		
	36	Decade counter		
	37	Ring counter		To design and verification of A/D converter
13 th	38	Assignment	13 th	
	39	Introduction and basic concepts including shift left and shift right		
14 th -	40	serial in serial out, parallel in serial out parallel in parallel out parallel in parallel out Universal shift register	1 4 th	To design and verification of D/A converter
	41	Working principle of A/D and D/A converters	14 th	
	42	Stair step Ramp A/D converter, Dual Slope A/D converter		
15 th -	43	Successive Approximation A/D Converter	15 th	To design and verification of 74181 ALU IC
	44	Binary Weighted D/A converter		
	45	R/2R ladder D/A converter, Applications of A/D and D/A converter		
16 th	46	Memory organization, classification of semiconductor memories (RAM, ROM, PROM, EPROM, and EEPROM)	16 th	Revision of
	47	static and dynamic RAM		Experiments
	48	introduction to 74181 ALU IC		