E-Contents of Digital Electronics

1
Kapil Bhoria

NUMBER SYSTEMS
AND CODES

Arithmetic operations using decimal numbers are quite common. However, in logical
design it is necessary to perform manipulations in the so-called binary system of num- bers
because of the on-off nature of the physical devices used. The present chapter is intended
to acquaint the reader with the fundamental concepts involved in dealing with number
systems other than decimal. In particular, the binary system is covered in con- siderable
detail.

POSITIONAL NOTATION

An ordinary decimal number can be regarded as a polynomial in powers of 10. For ex-
ample, 423.12 can be regarded as 4 010>+2 010" +3 010° +1 010" +2 010™. Decimal
numbers like this are said to be expressed in a number system with base, or radix, 10

because there are 10 basic digits (0, 1, 2, ..., 9) from which the number system is
formulated. In a similar fashion we can express any number N in a system using any base
b. We shall write such a number as (N), . Whenever (N), is written, the convention of

always expressing b in base 10 will be followed. Thus (N), = (pn prni ... pipo . paip02

... pam), where b is an integer greater than 1 and 0 < pi < b O1. The value of a number
represented in this fashion, which is called positional notation, is given by

(N)o = pn bn+ pn-1 bno+ ... + pobo+ p-o b-n (1.1-1)

+p-0b-B+ ...+ pom bO"

~Ne = O pibi (1.1-2)

For decimal numbers, the symbol “.” is called the decimal point; for more gen- eral
base-b numbers, it is called the radix point. That portion of the number to the right of

1

the radix point (p-o p-o... pom) is called the fractional part, and the portion to the left of
the radix point (p,p, n; ... po) is called the integral part.

Numbers expressed in base 2 are called binary numbers. They are often used in
computers since they require only two coefficient values. The integers from 0 to 15 are
given in Table 1.1-1 for several bases. Since there are no coefficient values for the range
10 to b O1 when b > 10, the letters A, B, C, . . . are used. Base-8 numbers are called octal
numbers, and base-16 numbers are called hexadecimal numbers. Octal and
hexadecimal numbers are often used as a shorthand for binary numbers. An octal number
can be converted into a binary number by converting each of the octal co- efficients
individually into its binary equivalent. The same is true for hexadecimal numbers. This
property is true because 8 and 16 are both powers of 2. For numbers with bases that are not
a power of 2, the conversion to binary is more complex.

1.1-1 Conversion of Base

To make use of nondecimal number systems, it is necessary to be able to convert a number
expressed in one base into the correct representation of the number in another base. One
way of doing this makes direct use of the polynomial expression (1.1-1). For example,
consider the binary number (1011.101), . The corresponding polynomial expression is

1 O02+002 +1021+102 +102m + 0 0202+ 1 0203

or8+2+ 1+1/2+1/8or 11+5/8=11.625

TABLE 1.1-1 Integers in various bases

2 3 4 5 8 10 11 12
16
0001| 001 | o1 01 01 01 01 01
0010| 002 | 02 02 02 021 021 02 2
0011| 010 | 03 03 03 03 | 03 03 3
0100| 011 | 10 | 04 04 041 04| 04 4
0101| 012] 11 10 05 05 | 05| 05 5
0110| 020 | 12 11 06 06 | 06 | 06 6
N)» 0111 021 | 13 12 07 071 07 | 07 7
1000| 022 | 20 13 10 08 | 08 | 08 8
1001| 100 | 21 14 11 091 09 09 9
1010 101 | 22 | 20 12 10 | OA| OA A
1011 102] 23 21 13 11 10 | OB B

2 Number Systems and Codes Chap. 1

1100 110 | 30 | 22 14 12 11 10 C

1101 111 | 31 23 15 13 12 11 D
1110 112 | 32 24 16 14 13 12 E

(
1111} 120 | 33 30 17 15 14 13 F

This technique of directly evaluating the polynomial expression for a number is a
general method for converting from an arbitrary base b7 to another arbitrary base b2 For
convenience, it will be called the polynomial method. This method consists in:

1. Expressing the number (N)b! as a polynomial, with base-b2 numbers used in the
polynomial.

2. Evaluating the polynomial, base-b2 arithmetic being used.

This polynomial method is most often used by human beings whenever a number is
to be converted to base 10, since it is then possible to use decimal arithmetic.

This method for converting numbers from one base to another is the first example of
one of the major goals of this book: the development of algorithms. In general terms, an
algorithm is a list of instructions specifying a sequence of operations which will give the
answer to any problem of a given type. The important characteristics of an algorithm are:
(1) that it is fully specified and does not rely on any skill or intuition on the part of the
person applying it and (2) that it always works, (i.e., that a correct answer is always
obtained.) The notion of an algorithm is discussed in more detail in Section 1.1 of [Knuth
68].

It is not always convenient to use base-b arithmetic in converting from base-b; to
base-b) . An algorithm for carrying out this conversion by using base-b; arithmetic will be

discussed next. This discussion is specifically for the situation in which b; =
10, but it can be extended easily to the more general case. This will be called the it- erative
method, since it involves iterated multiplication or division.

In converting (N)10 to (N)p the fraction and integer parts are converted separately.
First, consider the integer part (portion to the left of the decimal point). The general
conversion procedure is to divide (N)io by b, giving (N) 10 /b and a remainder. The
remainder, call it p , is the least significant (rightmost) digit of (V) . The next least

0 b
significant digit, pi , is the remainder of (N) 10/b divided by b, and succeeding digits are
obtained by continuing this process. A convenient form for carrying out this conversion is
illustrated in the following example.

Example 1.1-1

(@ 230 = (10111)22_ 23 (Remainder)
|2 11
2 s
12 2
()2_ 1
1_ 0

(b) (23)10 = @7s 8 | 23 (Remainder)
;8 2
5 0

1.1 Positional Notation

(c) @10y = (3120)s 5_ ﬂ (Remainder)

0 5 82

s S| 16

| S 3

5 1 o

Now consider the portion of the number to the right of the decimal point, i.e., the
fractional part. The procedure for converting this is to multiply (N);¢ (fractional) by b. If
the resulting product is less than 1, then the most significant (leftmost) digit of the fractional
part is 0. If the resulting product is greater than 1, the most significant digit of the fractional
part is the integral part of the product. The next most significant digit is formed by
multiplying the fractional part of this product by » and taking the integral part. The
remaining digits are formed by repeating this process. The process may or may not
terminate. A convenient form for carrying out this conversion is illustrated be- low.

Example 1.1-2.

(c) (27.68)10=(11011.101011 . ..)= (33.53 . . .)s

0.68x2=1.36
0.1

4 Number Systems and Codes Chap. 1

2 27 | @ ©0.6250=05%

0.625 x 8 =5.000
0.5
(b)(0.23)10=(0.001110 ...), 0.23 x 2=10.46 0.0
0.46 x 2=0.92 0.00
0.92 x 2= 1.84 0.001
0.84 x 2=1.68 0.0011
0.68 x 2=1.36 0.00111
036x2| 13 1 0.36x2=0.72 [=0.72 0.001110 "
6 1 0.72x 2= 1.44
20.10 3 0 0.44 x 2=0.88
20]01 1 1 0.88X2:1.76
2 0.1010
2 0.10101
0 1 0.76 x2=1.52 0.101011 ~°°
8 27 0.68 x 8=5.44 0.5
8 3 3 0.44 x 8=3.520.53 ...
0 3

This example illustrates the simple relationship between the base-2 (binary) sys- tem
and the base-8 (octal) system. The binary digits, called bits, are taken three at a time in
each direction from the binary point and are expressed as decimal digits to give the
corresponding octal number. For example, 101 in binary is equivalent to 5 in decimal; so
the octal number in part (c) above has a 5 for the most significant digit of the fractional
part. The conversion between octal and binary is so simple that the octal expression is
sometimes used as a convenient shorthand for the corresponding binary

number.

When a fraction is converted from one base to another, the conversion may not
terminate, since it may not be possible to represent the fraction exactly in the new base with
a finite number of digits. For example, consider the conversion of (0.1); to a base-10
fraction. The result is clearly (0.333 ...)10, which can be written as (0.03)o to indicate
that the 3's are repeated indefinitely. It is always possible to represent the result of a

Sec. 5

conversion of base in this notation, since the nonterminating fraction must consist of a
group of digits which are repeated indefinitely. For example, (0.2);; =2 x 117 = (0.1818
...)10=(0.00180)10.

It should be pointed out that by combining the two conversion methods it is pos- sible
to convert between any two arbitrary bases by using only arithmetic of a third base. For
example, to convert (16)7 to base 3, first convert to base 10,

(16); = 1 07" + 6 07° = 7 + 6 = (13)10 Then

convert (13)o to base 3,

3 13 (Remainder)
EN 1 (16); = (13)10 = (111)s
3 1
3| o 1

For more information about positional number systems, the following references are
good sources: [Chrystal 61] and [Knuth 69].

BINARY ARITHMETIC

Many modern digital computers employ the binary (base-2) number system to represent
numbers, and carry out the arithmetic operations using binary arithmetic. While a de- tailed
treatment of computer arithmetic is not within the scope of this book, it will be useful to
have the elementary techniques of binary arithmetic available. In performing decimal
arithmetic it is necessary to memorize the tables giving the results of the elemen- tary
arithmetic operations for pairs of decimal digits. Similarly, for binary arithmetic the tables
for the elementary operations for the binary digits are necessary.

1.2-1 Binary Addition

The binary addition table is as follows:

Sum Carry
0+0=0 0
0+1=1 0
1+0=1 0
1+1=0 1

Addition is performed by writing the numbers to be added in a column with the binary
points aligned. The individual columns of binary digits, or bits, are added in the usual
order according to the above addition table. Note that in adding a column of

1.2 Binary Arithmetic

6 Number Systems and Codes Chap. 1

bits, there is a 1 carry for each pair of 1's in that column. These 1 carries are treated as bits
to be added in the next column to the left. A general rule for addition of a column of
numbers (using any base) is to add the column decimally and divide by the base. The
remainder is entered as the sum for that column, and the quotient is carried to be added in
the next column.

Example 1.2-1
Base 2
Carries: 10011 11
1001.011 =(9.375)10

1101.101 =(13.625)10
10111.000 = (23)10 = Sum

1.2-2 Binary Subtraction

The binary subtraction table is as follows:

Difference Borrow
0 O0=0 0
odlr=11

100=10

Subtraction is performed by writing the minuend over the subtrahend with the bi-
nary points aligned and carrying out the subtraction according to the above table. If a
borrow occurs and the next leftmost digit of the minuend is a 1, it is changed to a 0 and the
process of subtraction is then continued from right to left.

Base 2 Base 10
Borrow: 1
0
Minuend Subtrahend 10 2
001 01
Difference 01 1

If a borrow occurs and the next leftmost digit of the minuend is a 0, then this 0 is
changed to a 1, as is each successive minuend digit to the left which is equal to 0. The first
minuend digit to the left which is equal to 1 is changed to 0, and then the subtrac- tion
process is resumed.

Sec. 7

Base 2 Base 10

Borrow: 1
011
Minuend 11\0\O\O 24
Subtrahend 010001 a17
Difference 00111 7
Borrow: 11
Minuend 01011
1\O\I\O\O\O 40
Subtrahend 0011001 025
Difference 001111 15

1.2-3 Complements

It is possible to avoid this subtraction process by using a complement representation for
negative numbers. This will be discussed specifically for binary fractions, although it is
easy to extend the complement techniques to integers and mixed numbers. The 2's
complement (>B) of a binary fraction B is defined as follows:

2B=(20B)1 = (10 OB),

Thus, 2(0.1101) = 10.0000 00.1101 = 1.0011. A particularly simple means of carry- ing out
the subtraction indicated in the expression for 2(0.1101) is obtained by noting that 10.0000
=1.1111+0.0001. Thus, 10.0000 00.1101 =(1.1111 00.1101) + 0.0001. The subtraction
1.1111 00.1101 is particularly easy, since all that is neces- sary is to reverse each of the
digits of 0.1101 to obtain 1.0010. Finally, the addition of 0.0001 is also relatively simple,
and yields 1.0011. In general, the process of forming 2B involves reversing the digits of B

and then adding 0.00 ... O1.

The usefulness of the 2's complement stems from the fact that it is possible to ob-
tain the difference 4 0B by adding °B to 4. Thus, 4 +°B=(4 +100B), = (10+ (4
0B)),. If(4 0B)> 0, then (10 + A OB), will be 10 plus the positive fraction (4
0B). It is thus possible to obtain 4 OB by dropping the leftmost 1 in 4 + *B. For ex-

1.0011
10.0001
ample,
= 0.1110 A= 0.1110
0B = 00.1101 +2B=
0.0001

8 Number Systems and Codes Chap. 1

If (4 OB) < 0, then 4 + °B = (10 Oj4 0OB|),, which is just equal to 2(4 0B), the 2's-

complement representation of 4 OB. For example,

A= 0.1101 A= 0.1101
0B = 00.1110 +2B= 1.0010
~0.0001 1.1111 2(0.0001)=1.1111

The !'s complement is also very commonly used. This is defined as

If A+ 'Bis formed, the resultis (4 OB +1000.000 ... 1),. If (4 OB) > 0, this can
be converted to 4 OB by removing the (10); and adding a 1 to the least significant digit of
A+ 1B. This is called an end-around carry. For example:

+0.0001
0.0001
A= 0.1110 = 0.1110
0= 00.1101 +'B = +1.0010
0.0001 A+'B= 10.0000
oa
oo oooooo
O End-around
O carry
oooooo
so that A 0OB= 0.0001
If (4 OB) < 0, then 4 + 'B will be the 1's complement of |4 OB|. For example,
A= 0.1101 A= 0.1101
0B = 0o0.1110 1p= 1.0001
'1B=(10 00.000 ... 1 0B),

where the location of the 1 in 0.000 ... 1 corresponds to the least significant digit of B.

Since (10 00.000 ... 1), is equal to 01.111 ... 1, it is possible to form !B by revers- ing
the digits of B and adding a 1 before the radix point. Thus, '(0.1101) = 1.0010.

1.2 Binary Arithmetic
Sec.

00.0001 A+'B= 1.1110 1(0.0001)=1.1110
The radix complement of a base-b fraction F'is defined as
bF= (10 OF),
and the diminished radix complement is defined as

Mip—100FO00.000... 1)

Similar procedures hold for the formation of the complements and their use for subtrac-

tion.
When integers or mixed numbers are involved in the subtractions, the definitions of

the complements must be generalized to
PN=(100 ... 0. ON),
and PN =(100... 0. ON 00.00 ... 1)
where 100 ... 0 contains two more digits than any integer to be encountered in the sub-

tractions. For example, if (), = 11.01, then

2(N), = 1000.00 O11.01
= 111.11011.01 +0.01

= 100.10+0.01
= 100.11
M= 11.10 M= 11.10
ov= 0O11.01 2N = 100.11
0.01 1000.01
ooo
oo
Discard

10 Number Systems and Codes Chap. 1

1.2-4 Shifting

In carrying out multiplication or division there are intermediate steps which require that
numbers be shifted to the right or the left. Shifting a base-b number k places to the right
has the effect of multiplying the number by b-k, and shifting & places to the left is equivalent
to multiplication by b+k. Thus, if n

d

Ny = pib' =@upsn ... P1P0. PP ... POm)bi=-m

shifting (V) k places to the left yields

(n pn-l ...p1popm ... pok . pOkpn ... pom)b = pibhi=

m
and

p,—bi+k= b p,—bi = bk(N)bi=Dm

A similar manipulation shows the corresponding situation for right shifts. Shifting
the binary point & places (k positive for right shifts and negative for left shifts) in a bi- nary
number multiplies the value of the number by 24. For example,

(110.101), = (6.625)10
35
(6.62) 4
(1.10101), = 2™ (6.625)10 = 10=(1.65625)10
(11010.1); = 2*2(6.625)10 = (4 06.625)10 = (26.5)10

1.2-5 Binary Multiplication

The binary multiplication table is as follows:

000=0
001=0
1 00=0
101=1

The process of binary multiplication is illustrated by the following example:

110.10 Multiplicand
10.1 Multiplier

11010 Partial Product
00000 Partial Product
11010

10000.010 Partial Product

Sec. 1.2 Binary Arithmetic 9

For every digit of the multiplier which is equal to 1, a partial product is formed consisting
of the multiplicand shifted so that its least significant digit is aligned with the 1 of the
multiplier. An all-zero partial product is formed for each 0 multiplier digit. Of course, the
all-zero partial products can be omitted. The final product is formed by summing all the
partial products. The binary point is placed in the product by using the same rule as for
decimal multiplication: the number of digits to the right of the binary point of the product
is equal to the sum of the numbers of digits to the right of the binary points of the multiplier
and the multiplicand.

The simplest technique for handling the multiplication of negative numbers is to use
the process just described to multiply the magnitudes of the numbers. The sign of the
product is determined separately, and the product is made negative if either the multiplier
or the multiplicand, but not both, are negative. It is possible to carry out multiplication
directly with negative numbers represented in complement form. This is usually done using
a recoding scheme called Booth's Algorithm, [Waser 82], which also speeds up the
multiplication.

1.2-6 Binary Division

Division is the most complex of the four basic arithmetic operations. Decimal long division
as taught in grade school is a trial-and-error process. For example, in dividing 362 by 46
one must first recognize that 46 is larger than 36 and then must guess how many times 46
will go into 362. If an initial guess of 8 is made and the multiplication8 x 46 = 368 is carried
out, the result is seen to be larger than 362 so that the 8 must be replaced by a 7. This
process of trial and error is simpler for binary division because there are fewer possibilities
in the binary case.

To implement binary division in a digital computer a division algorithm must be
specified. Two different algorithms, called restoring and nonrestoring division, are used.

Restoring division is carried out as follows: In the first step, the divisor is subtracted
from the dividend with their leftmost digits aligned. If the result is positive, a 1 is entered
as the quotient digit corresponding to the rightmost digit of the dividend from which a digit
of the divisor was subtracted. The next rightmost digit of the dividend is appended to the
result, which then becomes the next partial dividend. The divisor is then shifted one place
to the right so that its least significant digit is aligned with the rightmost digit of the partial
dividend, and the process just described is repeated.

If the result of subtracting the divisor from the dividend is negative, a 0 is entered in
the quotient and the divisor is added back to the negative result so as to restore the original

12 Number Systems and Codes Chap. 1

dividend. The divisor is then shifted one place to the right, and a subtraction is carried out
again. The process of restoring division is illustrated in the following example at the top of
the next page:

Divisor=1111 Dividend=1100
qo q0Dgnn gon qoo goon
0.1 1 0 0 1
I 111w(1100.0 0 0 0
0)

Subtract 1111
Negative result q0=0 0o o1 1
Restore +1111

11000
Subtract 1111
Positive result g =1 10010
Subtract 1111
Positive result gno=1 000110
Subtract 1111
Negative result quo=0 01001
Restore + 1111

01100
Subtract 1111
Negative result gno=0 0ooil1l
Restore + 1111
11000

Subtract 1111
Positive result gno= 1 1001 (remainder)

In nonrestoring division, the step of adding the divisor to a negative partial dividend
is omitted, and instead the shifted divisor is added to the negative partial divi- dend. This
step of adding the shifted divisor replaces the two steps of adding the divi- sor and then
subtracting the shifted divisor. This can be justified as follows: If X rep- resents the negative
partial dividend and Y the divisor, then 1/2Y represents the divi- sor shifted one place to
the right. Adding the divisor and then subtracting the shifted divisor yields X+ Y 01/2Y =
X + 1/2Y , while adding the shifted divisor yields the same result, X + 1/2Y . The steps
which occur in using nonrestoring division to divide 1100 by 1111 are shown in the
following example at the top of the next page:

Sec. 13

1.2 Binary Arithmetic

Divisor=1111 Dividend=1100

go ¢00q00g00gO0goon
0 .1 1 0 0 1

1111\ (1100 0 O O 0 0)

Subtract 1111

Negative result qgo =0 ooo1t1o

Shift and add + 1111

Positive result gmn=1 +10010

Shift and subtract O 1111

Positive result gnn= 1 +00110

Shift and subtract O1111

Negative result qoo= 0 O o O O O oo
Shift and add o1111

Negative result gono= 0 ooo110

Shift and add + 1111

Positive result qoo= 1 + 1001 (remainder)

An important technique for improving the performance of digital arithmetic cir-
cuitry is the use of more sophisticated algorithms for the basic arithmetic operations. A
discussion of these methods is beyond the scope of this book. The interested reader is
referred to [Waser 82], [Hwang 78], or Chapter 2 and Section 8.1 in [Gschwind 75] for
more details on arithmetic.

BINARY CODES

The binary number system has many advantages and is widely used in digital systems.
However, there are times when binary numbers are not appropriate. Since we think much
more readily in terms of decimal numbers than binary numbers, facilities are usually
provided so that data can be entered into the system in decimal form, the con- version to
binary being performed automatically inside the system. In fact, many com- puters have
been designed which work entirely with decimal numbers. For this to be possible, a scheme
for representing each of the 10 decimal digits as a sequence of bi- nary digits must be used.

1.3-1 Binary-Coded-Decimal Numbers

To represent 10 decimal digits, it is necessary to use at least 4 binary digits, since
there are 2%, or 16, different combinations of 4 binary digits but only 2, or 8, different
combinations of 3 binary digits. If 4 binary digits, or bits, are used and only one
combination of bits is used to represent each decimal digit, there will be six unused or

14 Number Systems and Codes Chap. 1

invalid code words. In general, any arbitrary assignment of combinations of bits to digits
can be used so that there are 16!/6! or approximately 2.9 0 10'°

TABLE 1.3-1 Some common 4-bit decimal codes

Decimal 8b; 4 2b 1 8 4 2 -1 2 4 2 1 Excess-3
digit b2 bo
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 1
3 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 0
4 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1
5 0 1 0 1 1 0 1 1 1 0 1 1 1 0 0 0
6 0 1 1 0 1 0 1 0 1 1 0 0 1 0 0 1
7 0 1 1 1 1 0 0 1 1 1 0 1 1 0 1 0
8 1 0 0 0 1 0 0 0 1 1 1 0 1 0 1 1
9 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0

possible codes. Only a few of these codes have ever been used in any system, since the
arithmetic operations are very difficult in almost all of the possible codes. ~Several of the
more common 4-bit decimal codes are shown in Table 1.3-1.

The 8,4,2,1 code is obtained by taking the first 10 binary numbers and assigning them
to the corresponding decimal digits. This code is an example of a weighted code, since the
decimal digits can be determined from the binary digits by forming the sum d = 8b; + 4b,
+ 2b; + by . The coefficients 8, 4, 2, 1 are known as the code weights. The number 462
would be represented as 0100 0110 0010 in the 8,4,2,1 code. It has been shown in [White
53] that there are only 17 different sets of weights possible for a positively weighted code:
(3,3,3,1), (4,2,2,1), (4,3,1,1), (5,2,1,1),(4,3,2,1), (4,4,2,1), (5,2,2,1), (5,3,1,1), (5,3,2,1),
(5,4,2,1), (6,2,2,1), (6,3,1,1), (6,3,2,1), (6,4,2,1), (7,3,2,1), (7,4,2,1), (8,4,2,1).

It is also possible to have a weighted code in which some of the weights are nega-
tive, as in the 8,4,02,01 code shown in Table 1.3-1. This code has the useful property of
being self-complementing: if a code word is formed by complementing each bit
individually (changing 1's to 0's and 0's to 1's), then this new code word represents the 9's
complement of the digit to which the original code word corresponds. For example, 0101
represents denotes the 3 in complement of the 8,4,02,01 code,b;, then a and 1010code is
represents self-complementing if, 6 in this code.

In general, if b; o

for any code word b3b,b by representing a digit d; , the code word b3b2b1bo represents 9 Od;.
The 2,4,2,1 code of Table 1.3-1 is an example of a self-complementing code having all
positive weights, and the excess-3 code is an example of a code which is self-
complementing but not weighted. The excess-3 code is obtained from the 8,4,2,1 code by
adding (using binary arithmetic) 0011 (or 3) to each 8,4,2,1 code word to obtain the
corresponding excess-3 code word.

Although 4 bits are sufficient for representing the decimal digits, it is sometimes
expedient to use more than 4 bits in order to achieve arithmetic simplicity or ease in er- ror
detection. The 2-out-of-5 code shown in Table 1.3-2 has the property that each code word
has exactly two 1's. A single error which complements 1 of the bits will

Sec. 15

1.3 Binary Codes

TABLE 1.3-2 Some decimal codes using more than 4 bits.

Decimal Biquinary
digit 2-out-of-5 5043210
0 00011 0100001
1 00101 0100010
2 00110 0100100
3 01001 0101000
4 01010 0110000
5 01100 1000001
6 10001 1000010
7 10010 1000100
8 10100 1001000
9 11000 1010000

always produce an invalid code word and is therefore easily detected. This is an un-
weighted code. The biquinary code shown in Table 1.3-2 is a weighted code in which 2 of
the bits specify whether the digit is in the range 0 to 4 or the range 5 to 9 and the other 5
bits identify where in the range the digit occurs.

GEOMETRIC REPRESENTATION OF BINARY NUMBERS

An n-bit binary number can be represented by what is called a point in n- space. To
see just what is meant by this, consider the set of 1-bit binary numbers, that is, 0 and 1.
This set can be represented by two points in 1-space, i.e., by two points on a line. Such a
presentation is called a 1-cube and is shown in Fig.1.4-1b.
(A 0-cube is a single point in 0-space.)

Now consider the set of 2-bit binary numbers, that is, 00, 01, 10, 11 (or, deci- mally,
0, 1, 2, 3). This set can be represented by four points (also called vertices, or nodes) in 2-
space. This representation is called a 2-cube and is shown in Fig.1.4-1c. Note that this
figure can be obtained by projecting the 1-cube (i.e., the horizontal line with two points)
downward and by prefixing a 0 to 0 and 1 on the original 1-cube and a 1 to 0 and 1 on the
projected 1-cube. A similar projection procedure can be followed in obtaining any next-
higher-dimensional figure. For example, the representation for the

0 1
(a) {b)
100 101
00 o1
" I Figure 1.4-1 n-Cubes for n=0, 1, 2, 3: (a)
10 11 010° 011 0-cube; (b) 1-cube; (c) 2- cube; (d) 3-cube.
(c) (d)

16 Number Systems and Codes Chap. 1

set of 3-bit binary numbers is obtained by projecting the 2-cube representation of Fig.1.4-
Ic. A 0 is prefixed to the bits on the original 2-cube, and a 1 is prefixed to the bits on the
projection of the 2-cube. Thus, the 3-bit representation, or 3-cube, is shown in Fig. 1.4-1d.

A more formal statement for the projection method of defining an n-cube is as
follows:

1. A O-cube is a single point with no designation.

2. An n-cube is formed by projecting an (rO0)-cube. A 0 is prefixed to the desig-
nations of the points of the original (n00)-cube, and a 1 is prefixed to the desig-
nations of the points of the projected (z00)-cube.

There are 2" points in an n-cube. A p-subcube of an n-cube. (p < 1) is de- fined as a

collection of any 2p points which have exactly (r» Op) corresponding bits all the same. For
example, the points 100, 101, 000, and 001 in the 3-cube (Fig.1.4-1d) form a 2-subcube,

since there are 2%= 4 total points and 3 02 = 1 of the bits (the sec-
ondp-subcubes) is the sam in ane fo n-rcube all fou, sincr pointse ther.e arlne general,(Cn

) = there (n!/(aren O p()!n!2p!)a" (Pnumber) /[(n Op of)!p ways!] different of se-

ntp
lecting » things taken n Op at a time) ways in which n Op of the bits may be the same, and
there are 22 0p combinations which these bits may take on. For example, there are (3122
)/(2!1!) = 12 1-subcubes (line segments) in a 3-cube, and there are (3!2')/(1!12!) = 6 2-
subcubes ("squares") in a 3-cube.

Besides the form shown in Fig.1.4-1, there are two other methods of drawing an n-
cube which are frequently used. The first of these is shown in Fig.1.4-2 for the 3- and 4-
cubes. It is seen that these still agree with the projection scheme and are merely a particular
way of drawing the cubes. The lines which are dotted are usually omitted for convenience
in drawing.

If in the representation of Fig.1.4-2 we replace each dot by a square area, we have
what is known as an n-cube map. This representation is shown for the 3- and 4- cubes in
Fig. 1.4-3. Maps will be of considerable use to us later. Notice that the appropriate entry
for each cell of the maps of Fig.1.4-3 can be determined from the corresponding row and
column labels.

It is sometimes convenient to represent the points of an n-cube by the decimal
equivalents of their binary designations. For example, Fig.1.4-4 shows the 3- and 4- cube
maps represented this way. It is of interest to note that, if a point has the decimal equivalent
N; in an n-cube, in an (n + 1)-cube this point and its projection (as defined) become N; and
Ni+2n.

Sec. 1.4 Geometric Representation of Binary Numbers 17

0000 0100 _1100 1000

[SRR o (T Ty

'|oo01:|0101: 1101511001

H i 1011
; 1 Figure 1.4-2 Alternative representa- tions: (a)
£.001 011 111 101} ! 11010 3_cybe; (b) 4-cube.
(a)
00 01 11 10
00|0000|0100(1100|1000
01|0001|0101|1101{1001
s ;08 30 11|oott1|ottif1t11j1ot1
0/000({010|110|100
1loo1|o11|111]|101 10|0010|0110|1110({1010
(a) (b) Fi = =
gure 1.4-3 n-Cube maps forn=3 (a)and n =4
(b).

1.4-1 Distance

A concept which will be of later use is that of the distance between two points on an n-
cube. Briefly, the distance between two points on an n-cube is simply the number of
coordinates (bit positions) in which the binary representations of the two points differ. This
is also called the Hamming distance. For example, 10110 and 01101 differ in all but
the third coordinate (from left or right). Since the points differ in four coordi- nates, the
distance between them is 4. A more formal definition is as follows: First, define the mod 2

sum of two bits, a O b, by
odo=0 100=1
og1=1 101=0
That is, the sum is 0 if the 2 bits are alike, and it is 1 if the 2 bits are different. Now consider

the binary representations of two points, Pi = (a0 amnz...a g)and P; = (b,n; bno2

...b0), on the n-cube. The mod 2 sum of these two points is defined as

Pk=Pi OPj = (angp O bngt , anp2 O brn2, ... ao 0O bo,
This sum Pk is the binary representation of another point on the n-cube. The number of 1's
in the binary representation Pi is defined as the weight of Pi and is given the sym- bol |Pi
|. Then the distance (or metric) between two points is defined as

D(Pi,P;)=|PiO P)|
The distance function satisfies the following three properties:

DPi Py ~ 0 if and only if Pi=P;
DP;,P;)= D@P; Pi)>0ifPi =/ P,D@P;,P;)+DP;,Pr)>
D(P;, Pk) Triangle inequality

00|0 (412|838
00 01 11 10 O1|1]5]13]9 Figure 1.4-4 Decimal labels in n-cube maps: (a)
0[(0|2]|6 |4 113|715/} 3.cube map; (b) 4-cube map.
111[3|7]5 10/ 2|6 |14|10
(a) (b)
16 Number Systems and Codes Chap. 1

To return to the more intuitive approach, since two adjacent points (connected by a
single line segment) on an n-cube form a 1-subcube, they differ in exactly one coordi- nate
and thus are distance 1 apart. We see then that, to any two points which are dis- tance D
apart, there corresponds a path of D connected line segments on the n-cube joining the two
points. Furthermore, there will be more than one path of length D con- necting the two
points (for D > 1 and n > 2), but there will be no path shorter than length D connecting the
two points. A given shortest path connecting the two points, thus, cannot intersect itself,
and D + 1 nodes (including the end points) will occur on the path.

1.4-2 Unit-distance Codes

In terms of the geometric picture, a code is simply the association of the decimal inte- gers
(0,1,2,...) with the points on an n-cube. There are two types of codes which are best
described in terms of their geometric properties. These are the so-called unit- distance
codes and error-detecting and error-correcting codes.

A unit-distance code is simply the association of the decimal integers (0,1,2,...) with
the points on a connected path in the n-cube such that the distance is 1 between the point
corresponding to any integer i and the point corresponding to integer i + 1 (see Fig. 1.4-5).
That is, if P; is the binary-code word for decimal integer i, then we must have

DPi,Pi+1)=1 i=0,1,2,...

Unit-distance codes are used in devices for converting analog or continuous sig- nals
such as voltages or shaft rotations into binary numbers which represent the magni- tude of
the signal. Such a device is called an analog-digital converter. In any such device there
must be boundaries between successive digits, and it is always possible for there to be some
misalignment among the different bit positions at such a boundary. For example, if the
seventh position is represented by 0111 and the eighth position by 1000, misalignment

Sec. 1.4 Geometric Representation of Binary Numbers 19

could cause signals corresponding to 1111 to be gen- erated at the boundary between 7 and
8. If binary numbers were used for such a de- vice, large errors could thus occur. By using
a unit-distance code in which adjacent positions differ only in 1 bit, the error due to
misalignment can be eliminated.

The highest integer to be encoded may or may not be required to be distance 1 from
the code word for 0. If it is distance 1, then the path is closed. Of particular interest is the
case of a closed nonintersecting path which goes through all 2x points of the n-cube. In
graph theory such a path is known as a (closed) Hamilton line. Any unitdistance code
associated with such a path is sometimes called a Gray code, although this term is usually
reserved for a particular one of these codes. To avoid

100-7 » —101-6

' 11-5 Figure 1.4-5 Path on a 3-cube
¥011-2 corresponding to a unit-distance code.

TABLE 1.4-1 Unit-dis- tance
code of Fig. 1.4-5

0 000
1 001
2 011
3 010
4 110
5 111
6 101
7 100

confusing terminology, we shall refer to a unit-distance code which corresponds to a closed
Hamilton line as a closed n code. This is a unit-distance code containing 2» code words in
which the code word for the largest integer (2. 0 1) is distance 1 from the code word for
the least integer (0). An open n code is similar except that the code words for the least and
largest integer, respectively, are not distance 1 apart.

The most useful unit distance code is the Gray code which is shown in Table 1.4- 2.
The attractive feature of this code is the simplicity of the algorithm for translating from the
binary number system into the Gray code. This algorithm is described by the expression

gi=bi O0bi +1

TABLE 1.4-2 The Gray code

G
Binary oy

Decimal b3 b2 b1 bo fe) s} g1 g0

0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1

2 0 0 1 0 0 0 1 1
3 0 0 1 1 0 0 1 0
4 0 1 0 0 0 1 1 0
5 0 1 0 1 0 1 1 1
6 0 1 1 0 0 1 0 1
7 0 1 1 1 0 1 0 0
8 1 0 0 0 1 1 0 0
9 1 0 0 1 1 1 0 1
10 1 0 1 0 1 1 1 1
11 1 0 1 1 1 1 1 0
12 1 1 0 0 1 0 1 0
13 1 1 0 1 1 0 1 1
14 1 1 1 0 1 0 0 1
15 1 1 1 1 1 0 0 0
18 Number Systems and Codes Chap. 1

Thus, the Gray code word corresponding to 1100 in binary is formed as follows: go
=b0|:|b1=0|:|0=0g1=b1|:|b2=0|:| 1=1g2=b2|:|b3=1|:|
1=0

g=bs0bs=b3=1 b4 understood to be 0
1.4-3 Symmetries of the n-Cube

A symmetry of the n-cube is defined to be any one-to-one translation of the binary point
representations on the n-cube which leaves all pairwise distances the same. If we consider
the set of binary numbers, we see that there are only two basic translation schemes which
leave pairwise distances the same. (1) The bits of one coordinate may be interchanged with
the bits of another coordinate in all code words. (2) The bits of one coordinate may be
complemented (i.e., change 1's to 0's and 0's to 1's) in all code words. Since there are n!
translation schemes possible using (1), and since there are 2» ways in which coordinates
may be complemented, there are 2» translation schemes possible using (2). Thus, in all

there are 2"(n!) symmetries of the n-cube. This means that for any n-bit code there are 2 »

(n!) 0O rather trivial modifications of the original code (in fact, some of these may result
in the original code) which can be obtained by interchanging and complementing
coordinates. The pairwise distances are the same in all these codes.

Sec. 1.4 Geometric Representation of Binary Numbers 21

It is sometimes desired to ennumerate the different types of a class of codes. Two codes are
said to be of the same type if a symmetry of the n-cube translates one code into the other
(i.e., by interchanging and complementing coordinates). As an example, we might ask:
What are the types of closed n codes? It turns out that for n < 4 there is just one type, and
this is the type of the conventional Gray code. For n = 4, there are nine types. Rather than
specify a particular code of each type, we can list these types by specifying the sequence
of coordinate changes for a closed path of that type. On the as- sumption that the
coordinates are numbered (3210), the nine types are shown in Table 1.4-3.

TABLE 1.4-3 Nine different types of unit-distance 4-bit code

Type

1 (Gray)

O 00 3 N L AW
=)
cCoocoococooco o~
=)
W W W W W Www wN
N DD NN O —= O
Wm0 WO W O —
— NN = == O = O
O O = W WO N NDW
W = O N = = = O O
S PN O O WO = =
S e e = =)
O W WD WO W WN
—_ 0 O = NN o OO
N = = W OO = = =
W o O = = = O O O
NN NN W W N W

ERROR-DETECTING AND ERROR-CORRECTING CODES

Special features are included in many digital systems for the purpose of increasing system
reliability. In some cases circuits are included which indicate when an error has occurred—
error detection—and perhaps provide some information as to where the error is—error
diagnosis. Sometimes it is more appropriate to provide error correction: circuits not only
detect a malfunction but act to automatically correct the erroneous indications caused by
it. One technique used to improve reliability is to build two duplicate systems and then to
run them in parallel, continually comparing the outputs of the two systems, [Burks 62].
When a mismatch is detected, actions are initiated to determine the source of the error and
to correct it, [Keister 64]. Another approach uses three copies of each system module and
relies on voter elements to select the correct output in case one of the three copies has a
different output from the other two, ([von Neumann 56], [Lyons 62]). This technique is
called triple modular redundancy (TMR). Such costly designs are appropriate either when
the components are not sufficiently reliable [Burks 62] or in systems where reliability is
very important as in real-time applications such as telephony, [Keister 64], airline
reservations, [Perry 61], or space vehicles, [Dickinson 64].

In many other applications where such massive redundancy is not justified it is still
important to introduce some (less costly) techniques to obtain some improvement in
reliability. A very basic and common practice is to introduce some redundancy in encoding
the information manipulated in the system. For example, when the 2-out-of- 5 code is used
to represent the decimal digits, any error in only one bit is easily detected since if any single
bit is changed the resulting binary word no longer contains exactly two 1's. While it is true
that there are many 2-bit errors which will not be detected by this code, it is possible to
argue that in many situations multiple errors are so much less likely than single errors that
it is reasonable to ignore all but single errors.

Suppose it is assumed that the probability of any single bit being in error is p and
that this probability is independent of the condition of any other bits. Also suppose that p
is very much less than one, (i.e., that the components are very reliable). Then the

probability of all 5 bits representing one digit being correct is Py = (10p)°, the
probability of exactly one error is P; = 5(10p)*p and the probabilty of two errors is P> =
10(10p)’p? . Taking the ratio Po/P1=2p/(10p) O 2p/(1+p) << 1, showing that the
probabilty of a double error is much smaller than that of a single error. Arguments such as
this are the basis for the very common emphasis on handling only single errors.
It is possible to easily convert any of the 4-bit decimal codes to single-error-
detecting codes by the addition of a single bitOa parity bit as is illustrated for the 8421 code
in Table 1.5-1. The parity bit p is added to each code word so as to make the total number

of 1's in the resultant 5-bit word even; i.e., p= by U b; O b, O b5 If any one bit is reversed
it will change the overall parity (number of 1's) from even to odd and thus provide an error
indication.

This technique of adding a parity bit to a set of binary words is not peculiar to binary-
coded-decimal schemes but is generally applicable. It is common practice to add a parity
bit to all information recorded on magnetic tapes.

20 Number Systems and Codes Chap. 1

Sec. 1.4 Geometric Representation of Binary Numbers 23

Figure 1.5-1
with parity bit p

TABLE 1.5-1 8421 code with parity bit added

Decimal 8 4 2 1 Parity, digit bs b2 b1 bo p

O 00 3N L bW~ O
—_—_0 O 00 oo oo
SO = =, =0 o oo
SO = = OO0 == OO
—_— o O~ O = O~ O
O = = OO O =D

The 8421 code with a parity bit added is shown plotted on the 5-cube map of Fig.1.5-
1. Inspection of this figure shows that the minimum distance between any two words is two
as must be true for any single-error-detecting code.

In summary, any single-error-detecting code must have a minimum distance between
any two code words of at least two, and any set of binary words with minimum distance
between words of at least two can be used as a single-error-detecting code. Also the
addition of a parity bit to any set of binary words will guarantee that the minimum distance
between any two words is at least two.

p=0 p=1

bzb2 bzb2
bibo 00 01 11 10 bibo 00 01 11 10
00| 0 00 4
01 5 9 01 1
1|3 11 7

Five-cube map for the 8421 BCD code

10 6 10| 2

1.5-1 Single-Error-Correcting Codes

A parity check over all the bits of a binary word provides an indication if one of the bits is
reversed; however, it provides no information about which bit was changed Oall bits enter
into the parity check in the same manner. If it is desired to use parity checks to not only
detect an altered bit but also to identify the altered bit, it is necessary to resort to several
parity checks Oeach checking a different set of bits in the word. For example, consider the
situation in Table 1.5-2 in which there are three bits, M), M, and M3, which are to be used
to represent eight items of information and there are two parity check bits C; and C>. The
information bits, M; are often called message bits and the C; bits check bits. As indicated
in the table C, is obtained as a parity check over

Sec. 1.5 Error-Detecting and Error-Correcting Codes 21

TABLE 1.5-2 A parity check table

M M, M Ci C2

oo oo 0o

oo CH oo

Ci=MOM, Co=M 0 M;

bits M and M3, while C> checks bits M> and Ms.

At first glance it might seem that this scheme might result in a single-error-correct-
ing code since an error in M3 alters both parity checks while an error in M, or M, each alters
a distinct single parity check. This reasoning overlooks the fact that it is possible to have
an error in a check bit as well as an error in a message bit. Parity check one could fail as
a result of an error either in message bit M or in check bit C;. Thus in this situation it
would not be clear whether M; should be changed or not. In order to obtain a true single-
error-correcting code it is necessary to add an additional check bit as in Table 1.5-3.

TABLE 1.5-3 Eight-word single-error-correcting code: (a) Parity check table; (b)
parity check equations; (c) Single-error-correcting code

(@ (b)
M1 M2 M3 C1 C2 C3
Ci=M OM;
oo oo oo oo C:=M O M
0o O C3=M OM>
oo ad oo
(©

MiMaMs CiC2C3a000000H6001110c¢
010011d011101e100101 10101
1

g110110A111000

Inspection of the parity check table in Table 1.5-3a shows that an error in any one of
the check bits will cause exactly one parity check violation while an error in any one of the
message bits will cause violations of a distinct pair of parity checks. Thus it is possible to
uniquely identify any single error. The code words of Table 1.5-3¢ are shown plotted on
the 6-cube map of Fig. 1.5-2. Each code word is indicated by the cor-

22 Number Systems and Codes Chap. 1

25

responding letter and all cells distance 1 away from a code word are marked with an O. The
fact that no cell has more than one O shows that no cell is distance one away from two code
words. Since a single error changes a code word into a new word distance one away and
each of such words is distance one away from only one code word it is possible to correct
all single errors. A necessary consequence of the fact that no word is distance one away
from more than one code word is the fact that the minimum distance between any pair of
code words is three. In fact the necessary and sufficient conditions for any set of binary
words to be a single-error-correcting code is that the minimum distance between any pair
of words be three.

A single error correcting code can be obtained by any procedure which results in a
set of words which are minimum distance three apart. The procedure illustrated in Table
1.5-3 is due to [Hamming 50] and due to its systematic nature is almost univer- sally used
for single-error-codes.

With three parity check bits it is possible to obtain a single-error-correcting code of
more than eight code words. In fact up to sixteen code words can be obtained. The parity
check table for a code with three check bits, Ci, C», and C4, and four message bits M3 , Ms,
Ms and M3 is shown in Table 1.5-4. The peculiar numbering of the bits has been adopted to
demonstrate the fact that it is possible to make a correspondence between the bit positions
and the entries of the parity check table. If the blanks in the table are replaced by 0's and
the O's by 1's then each column will be a binary number which is the equivalent of the
subscript on the corresponding code bit. The check bits are placed in the bit positions
corresponding to binary powers since they then enter into only one parity check making
the formation of the parity check equations very straight- forward.

The fact that Table 1.5-4 leads to a single-error-correcting code follows from the fact
that each code bit enters into a unique set of parity checks. In fact, the necessary and
sufficient conditions for a parity check table to correspond to a single-error-correct- ing
code are that each column of the table be distinct (no repeated columns) and that

00 Mg 01

Mz Cy Mz C4
C2C3 00 O1 11 10 C2C3s 00 O1 11 10
00| a X X 00| X X
01| X X X 01| X X d
1 1] X X X 1 1{c |X X X
10| X | X |b X 10| X | X | X

10 11

3Gy Mz Cy
C2C3 00 O1 11 10 C2C3 00 01 11 10
00| X X 00| X X h
01| X e X | X 01 X X X
1 1] X X X f 11| X X X
10 X X X 1 0| X g X X

Figure 1.5-2 Six-cube map for the code of

Table 1.5-3c.
Sec. 1.5 Error-Detecting and Error-Correcting Codes

TABLE 1.5-4 Parity check table for a single-error-correcting code
with 3 check bits and 4 message bits

Ci 2 M Cy Ms Ms M

oo oo
oo oo
oo nln oo oo
oo oo oo oo
Ci=M0Ms O M
Cr=M30 M, 0 M
Ca=Ms 0 Ms, O M,

each column contain at least one entry. It follows from this that with K check bits it is
possible to obtain a single-error-correcting code having at most 2x OO total bits.1 There are
2k different columns possible but the empty column must be excluded leaving 2€

OOcolumns.
1.5-2 Double-Error-Detecting Codes

If a code such as that generated by Table 1.5-4 is being used and a double error occurs, a
correction will be carried out but the wrong code word will be produced. For exam- ple,
suppose that bits C; and C, were in error, the first two parity checks would be vio- lated
and it would appear as if message bit M3 had been in error. Similarly, errors in bit M3 and
Ms would result in violations of the first and third parity checks,2 and an indication of Ms
being in error would be produced. It is possible to add the ability to detect double errors
as well as correct single errors by means of one addition parity check over all the bits. This
is illustrated in Table 1.5-5. Any single error in the resulting code will result in the same
parity check violations as without P and in addition will violate the P parity check. Any
double error will not violate the P parity check but will violate some of the C parity checks
thus providing an indication of the double error.

A code that detects double errors as well as correcting single errors must consist of
binary words having a minimum distance of four. This situation is illustrated by Fig.1.5-3.
Both the single-error codes and the double-error-detecting codes are in use in contemporary
systems [Hsiao 70]. Many more sophisticated error-correcting codes have been studied (
[Peterson 72], [Berlekamp 68]).

1 2

In Table 1.5-4, K=3, 2X01=7 and the table does indeed have a total of 7 bits. © The
two changes in parity check two would cancel.

27

24 Number Systems and Codes Chap. 1
TABLE 1.5-5 Parity check table for a code to detect all double errors and
correct all single errors

Ci C M Cy Ms Ms M P

oo oo
oo oo

00 oo oo oo

oo oo oo oo

oo oo 00 oo oo oo oo oo

Ci =M;0 MsOM;
Cy =M;0Ms, OM;
Cs =Ms OMs, OM;
P=C, O0C, OM; O Cy OMs O Ms OM;

Double error,
not single error

Figure 1.5-3 Fragment of an N-cube illustrating the
distance between code words in a double-error-detecting,
single- error-correcting code.

Single
error

Single
error

Code word Code word

REFERENCES

[BERLEKAMP 68] Berlekamp, E.R., Algebraic Coding Theory, McGraw-Hill Book Company, New York
1968.

[BURKS 62] Burks, A.W., H.H. Goldstine, and J. von Neumann, “Preliminary Discussion of the Logical
Design of an Electronic Computing Instrument,” Datamation, Section 6.5, pp. 39-40, October 1962.

[CHRYSTAL 61] Chrystal, G., Algebra; an Elementary Text-book , pt.1, Dover Publications, Inc., New York,
1961.

[DICKINSON 64] Dickinson, M.M., J.B. Jackson, and G.C. Randa, “Saturn V Launch Vehicle Digital
Computer and Data Adapter,” Proc., AFIPS Fall Joint Computer Conf.,Vol.26, Part 1, pp.501- 516,
1964.

[GSCHWIND 75] Gschwind, H.W., and E.J. McCluskey, Design of Digital Computers, Springer- Verlag,
New York, 1975.

[HAMMING 50] Hamming, R.W., “Error Detecting and Error Correcting Codes,” BSTJ , Vol.29,
pp.147160, April 1950.

[HSIAO 70] Hsiao, M.Y., “A Class of Optimal Minimum Odd-weight-column SEC-DED Codes, /BM J.
Res. and Devel.,Vol.14, No.4, pp.395-401, July 1970.

[HWANG 78] Hwang, K., Computer Arithmetic: Principles, Architecture, and Design, J. Wiley and Sons,
Inc., New York, 1978.

Chap. 1 References
[KEISTER 64] Keister, W., R.W. Ketchledge and H.E. Vaughan, “No. 1 ESS: System Organization and
Objectives,” Bell Syst. Tech. J,Vol.43, No.5, Sec. 4, pp. 1841-1842, Sept. 1964.

[KNUTH 68] D.E. Knuth, Fundamental Algorithms, Addison-Wesley Publishing Company, Inc., Reading,
Mass., 1968.

[KNUTH 69] D.E. Knuth, Seminumerical Algorithms, Addison-Wesley Publishing Company, Inc.,
Reading, Mass., 1969.

[LYONS 62] Lyons, R.E., and W. Vanderkulk, “The Use of Triple-modular Redundancy to Improve
Computer Reliability,” IBM J. Res. and Devel ., Vol. 6, No. 2, pp. 200-209, 1962.

[PERRY 61] Perry, M.N., and W.R. Plugge, “American Airlines SABRE Electronics Reservations System,”
Proc., 9th Western Joint Computer Conf., Los Angeles, CA, pp. 593, May 1961.

[PETERSON 72] Peterson, W.W., and E.J. Weldon, Jr., Error-correctingCodes, The MIT Press, Cambridge,
MA., 2nd Ed., John Wiley & Sons, Inc., New York, 1972.

[VON NEUMANN 56] von Neumann, J., “Probabilistic Logics and the Synthesis of Reliable Organisms
from Unreliable Components,” Automata Studies, C.E. Shannon and J. McCarthy, eds., Annals of Math
Studies No. 34, pp. 43-98, Princeton University Press, 1956.

[WASER 82] Waser, S., and M.J. Flynn, Introduction to Arithmetic for Digital Systems Designers, Holt,
Rinehart and Winston, New York, 1982.

[WHITE 53] White, G.S., “Coded Decimal Number Systems for Digital Computers,” Proc., IRE, Vol.41,
No.10, pp. 1450-1452, October, 1953.

PROBLEMS

Convert:
(a) (523.1)10tobase 8 (e) (1100.11), to base 7
(b) (523.1)10 to base 2 (f) (101.11), to base 4 (¢) (101.11), to base 8 (g) (321.40)¢
to base 7
(d) (101.11), to base 10 (h) (25/3) 19 to base 2

In base 10 the highest number which can be obtained by multiplying together two single digits
is 9 0 9 =81, which can be expressed with two digits. What is the maximum number of digits
required to express the product of two single digits in an arbitrary base-b system?

Given that (79)10 = (142),, determine the value of b.
Given that (301), = (1), , where I is an integer in base b and [*is its square, determine the value
of b.
Let
N+ = (ngmsmomng)* =234 95 By +3894 95 By 4085 By + 50, 4+
= 120n4 + 60n3 + 20n, + S5n; + ny where
0<ny <4 0<m<3 0<m<2 0<n;<10 < n4<1 withall the ni positive
integers.
(a) Convert (11111)* to base 10.
(b) Convert (11234)* to base 10.
(¢) Convert (97)¢ to its equivalent (n4 n3naning)* .
(d) Which decimal numbers can be expressed in the form (74 nznaning)* ?

26 Number Systems and Codes Chap. 1
29

In order to write a number in base 16 the following symbols will be used for the numbers
from 10 to 15:

10 ¢ 12w 14 u

(a) Convert Ile 1317 15f (4tu)16 to base 10.
(b) Convert (2t#fu)s to base 2 directly (without first converting to base 10).

(@)

Convert (1222); to base 5, (NV)s , using only binary arithmetic:
Convert (1222)3 to (N), . (b) Convert (N); to (N)s .

Perform the following binary-arithmetic operations: (a) 11.10
+10.11 +111.00 + 110.11 +001.01 =?

(b)
©
(@)
(e

111.00 O011.11 =7
011.11 0111.00="?
111.001 O1001.1 =72
101011.1 +1101.11 =?

Form the radix complement and the diminished radix complement for each of the
following numbers: (a) (.10111),

(b)
(©
()
(e
®

(@

(b)
(©

(@)

(.110011),
(0.5231)10
(0.32499),
(0.3214)q
(032456),

Write out the following weighted decimal codes:

@) 7,4,2, 01

(i) 8,4,02,01

(i) 4,4,1,02

(iv) 7,5,3,06

(v) 8,7,04,02

Which codes of part (a) are self-complementing?

If a weighted binary-coded-decimal code is self-complementing, what necessary
condition is placed on the sum of the weights?

Is the condition of part (c) sufficient to guarantee the self-complementing property?
Give an example to justify your answer.

Write out the following weighted decimal codes: (7,3,1,02),(8,4,03, 02), (6, 2,
2, 1). Which of these, if any, are self-complementing?

Sketch a 4-cube, and label the points. List the points in the p-subcubes for p=2,3.

Compute all the pairwise distances for the points in a 3-cube. Arrange these in a matrix form
where the rows and columns are numbered 0,1,...,7, corresponding to the points of the 3-
cube. The 0-, 1-, and 2-cube pairwise distances are given by submatrices of this matrix.
By observing the relationship between these matrices, what is a scheme for going from
the n-cube pairwise-distance matrix to the (n+1)- cube pairwise-distance matrix?

What is a scheme for going from the Gray code to the ordinary binary code using addition mod
2 only?

For the Gray code, a weighting scheme exists in which the weights associated with the bits are
constant except for sign.The signs alternate with the occurrence of 1's,

Chap. 1

Problems

left to right. What is the weighting scheme?
List the symmetries of the 2-cube.
Write out a typical type-6 closed-unit-distance 4 code (Table 1.4-3).
Write out two open unit-distance 4 codes of different type (i.e., one is not a symmetry of the other).
Write out a set of six code words which have and single-error-correcting property.

A closed error-detecting unit-distance code is defined as follows: There are k (k<2x) ordered binary
n-bit code words with the property that changing a single bit in any word will change the
original word into either its predecessor or its successor in the list (the first word is considered
the successor for the last word) or into some other n-bit word not in the code. Changing a
single bit cannot transform a code word into any code word other than its predecessor or
SuCCessor. List the code word for such a code with k£ = 6, n = 3. Is there more than one
symmetry type of code for these specifications? Why?

31

28

Number Systems and Codes

Chap. 1

CHAPTER 2 PREVIEW

 Counting in Decimal - Electronic
and Binary Translators

 Place Value + Hexadecimal
Numbers
* Binary to Decimal
Conversion * Octal Numbers

* Decimal to Binary Conversion

COUNTING IN
DECIMAL AND BINARY

 Number System -
Code using symbols that refer to
a number of items.

* Decimal Number System - Uses ten
symbols (base 10 system)

* Binary System -
Uses two symbols (base 2 system)

PLACE VALUE

 Numeric value of symbols in different positions.

 Example - Place value in binary system:

Place Value 8 4s 2s 1s

Binary Yes Yes No No

Number 1 1 0 0

RESULT: Binary 1 00 = decimal 8 +4 + (0 + 0 = decimal 12

BINARY TO DECIMAL
CONVERSION

Convert Binary Number 110011 to
a Decimal Number:

Binary 1 1 0 0 1 1

R

Decimal 32+16+0+0+2+1= 51

Convert the following binary
numbers into decimal numbers:

Binary 1001 = 9

Binary1l1l = 15

Binary 0010= 2

DECIMAL TO BINARY
CONVERSION

Divide by 2 Process

Decimal # 13 + 2 = 6 remainder 1

6 -2 =3 remainder 0
3+-2=1remainder 1

1+2=0remainder 1

Convert the following decimal
numbers into binary:

Decimall = 101

Decimald = 0100

Decimal 17 =10001
ELECTRONIC
TRANSLATORS

Devices that convert from decimal to
binary numbers and from binary to
decimal numbers.

Encoders - translates from decimal
to binary

Decoders - translates from binary to
decimal

ELECTRONIC ENCODER -
DECIMAL TO BINARY

Binary output Decimal input

Decin 00 1010
to 01 011

3 Binai
Encod ||y

* Encoders are available in I1C form.

 This encoder translates from decimal
input to binary (BCD) output.

ELECTRONIC DECODING:

BINARY TO DECIMAL
Binary input Decimal output
0010110

Blnary -to- 7_,NV_ l l
Segment Decodgap—

Driver _AAp— } l
AN

G

 Electronic decoders are available in 1C form.

—~\\—
— A\

* This decoder translates from binary to decimal.
* Decimals are shown on an 7-segment LED display.

* This decoder also drives the 7-segment display.

HEXADECIMAL NUMBER SYSTEM

Uses 16 symbols -Base 16 System
0-9,A,B,C,D,E, F

Decimal Binary Hexadecimal
1 0001 1

9 1001 9
10 1010 A

15 11 F

16 10000 10
HEXADECIMAL AND
BINARY CONVERSIONS
Hexadecimal to Binary Conversion
Hexadecimal C 3
} }
Binary 1100 0011

*Binary to Hexadecimal Conversion

Binary 110 1010

b

Hexadecimal E A

DECIMAL TO HEXADECIMAL
CONVERSION

Divide by 16 Process

Decimal # 47 - 16 = 2 remainder 15

2+16 =0 remainder 2

v

v

2

K

HEXADECIMAL TO DECIMAL

CONVERSION

Convert hexadecimal number
2DB to a decimal number

Place Value 256s 16s 1s

Hexadecimal 2 D B
256x2) (16x13) (1x11)

Decimal 512 + 208 + 1 =731

Convert Hexadecimal number A6 to Binary

LGSR 1010 0110 (Binar

Convert Hexadecimal number 16 to Decimal
16 -

Convert Decimal 63 to Hexadecimal

(RIS F (Hexadecimal)

OCTAL NUMBERS

Uses 8 symbols -Base 8 System
0,1,2,3,4,5,6,7

o 0 1 N

Decimal Binary Octal

1 001 1
10 6

11 7

001 000 10

001 001 1

PRACTICAL SUGGESTION ON
NUMBER SYSTEM CONVERSIONS

e Use a scientific calculator

 Most scientific calculators have DEC, BIN,
OCT, and HEX modes and can either convert
between codes or perform arithmetic in
different number systems.

* Most scientific calculators also have other
functions that are valuable in digital
electronics such as AND, OR, NOT, XOR, and
XNOR logic functions.

ECE _ Digital Electronics

Basic Logic Operations,
Boolean Expressions,
and
Boolean Algebra

Basic Logic Operations

Basic Logic Operations

« AND
« OR
« NOT (Complement)

 Order of Precedence

1. NOT

2. AND

3. OR

o can be modified using parenthesis;

ECE

» r
7
.
) ’ -
p— | -

Basic Logic Operations

Table 1.8
Truth Tables of Logical Operations

AND OR NOT
X V| xey x y| x+y B
0 O 0 0 O 0 0
0 1 0 0 1 1 1
1 0 0 1 O 1
1 1 1 1 1 1

Digital Electronics

Basic Logic Operations

X Z=Xx"y -Y:DE" 41 Se .t
X X
Po—; ¥y

(a) Two-input AND gate (b) Two-input OR gate (c) NOT gate or inverter

Additional Logic Operations

« NAND
o F=(A.B)
« NOR
o F=(A+B)
« XOR
o Output is 1 iff either input is 1, but not both.t

« XNOR (aka. Equivalence)

o Outputis 1iff bot inputs are 1 or both inputs
are 0.t

Additional Logic Operations

NAND XOR

o—\ o /
D

/ N

NOR denotes inversion XNOR

Additional Logic Operations

Exer ise:

Derive the Truth ta le for each of the
following logi operations:

1. 2-input NAND
2. 2-input NOR

Additional Logic Operations

Exer ise:

Derive the Truth ta le for each of the
following logi operations:

1. 2-input XOR
2. 2-input XNOR

Truth ables

Truth T ables

. Used to describe the functional behavior of a Boolean
expression and/or Logic circulit.

« Each row in the truth table represents a

unique combination of the input variables.
0 For n input variables there are 2" rows.no

« The output of the logic function is defined for each
row.

ECE - Digital Electronics 11

« Each row is assigned a numerical value, with the rows
listed in ascending order.

« The order of the input variables defined in the logic
function is important.

ECE - Digital Electronics

12

input Truth Table

F(A,B,C) = Boolean expression

input Truth Table

F(A,B,C,D) = Boolean expression

Boolean E pressions

Boolean Expressions

« Boolean expressions are composed of

« Literals - variables and their complements
« Logical operations

« Examples

« F= W+A‘ +ABC+A‘B'C'

literals Ioglc operations

- F=(A+B+C').(A'+ '+C).(A+B+C)
- F=AB.C'+A.(B.C'+B'.C)

Boolean Expressions

« Boolean expressions are realized using a
network (or combination) of logic gates.

o Eachlogic gatei plements one of the logic
operations in thetBoolean expression

o Eachinputto alo ic gate represents one of
the literals in ther oolean expression

literals

A
B

\X‘

D=
4 logic operations

\

\

=

{

-

Boolean Expressions

« Boolean expressions are evaluated by

« Substituting a 0 or 1 for each literal
. Calculating the logical value of the expression

. A Truth Table specifies the value of the
Boolean expression for every combination of
the variables in the Boolean expression.

. For an n-variable Boolean expression, the truth
table has 2" rows (one for each combination).

ECE - Digital Electronics

19

Boolean E pressions

Exa ple:
Evaluate the following Boolean expression,
for all combination of inputs, using a Truth
table.

F(A,B,C)=A'B. +AB.C'+AC

Boolean E pressions

« Two Boolean expressi ns are equivalent if they
have the same value for each combination of
the variables in the Bo lean expression.

o Fi=(A+B)
o F2=A'B
« How do you prove that two Boolean
expressions are equivalent?

o Truth table
o Boolean Algebra

Boolean E pressions

Exa ple:

Using a Truth table, prove that the following
two Boolean expressions are equivalent.

F1=(A+B)
F2=A'B’

Boolean Algebra

Boolean Algebra

« George Boole developed an algebraic description for
processes involving logical thought and reasoning.

[

Became known as Boolean Algebra

 Claude Shannon later dem onstrated that Boolean
Algebra could be used to escribe switching circuits.

O

Switching circuits are circuits built from devices that
switch between two states (e.g. 0 and 1).

Switching Algebra is a special case of Boolean
Algebra in which all v ariables take on just two distinct

values

. Boolean Algebra is a powerful tool for analyzing and
designing logic circuits.

ECE - Digital Electronics

25

Basic Laws and Theorems

Commutative Law
Associative Law
Distributive Law

Null Elements
|dentity
|dempotence
Complement
Involution
Absorption (Covering)
Simplification
DeMorgan's Rule
Logic Adjacency (Combining)
Consensus

A+B=B+A
A+(B+C)=(A+B)+C
A(B+C)=AB +AC
A+1=1

A+0=A

A+A=A

A+A'=

A"=A

A+AB=A
A+AB=A+B
(A+B)=A'B

AB + AB'= A

AB +BC+AC=AB+AC

AB=BA
A.(B.C)=(A.B).C
A+(B.C)=(A+B).(A+C)
A.0=0

A=A

A=A

A=0

> x> >

A.(A+B)=A
A.(A+B)=A.B

(A.B)=A'+B'

(A+B).(A+B)=A
(A+B).(B+C).(A+C)=(A+B).(A'+C)

ldemp tence

A+ =A
F = ABC + ABC' + ABC
F=AB +ABC

Note: terms can also be added using this theorem

A. =A
G=(A"+B+C).(A+B'+C).(A+B'+C)
G=(A'+B+C)+(A+B'+C)

Note: terms can also be added using this theorem

Complement

A+ '=1
F = ABC'D + ABCD
F = ABD.(C' + C)
F = ABD

A.A'=0
G=(A+B+C+D).(A+B'+C+D)
G=(A+C+D)+(B.B)
G=A C+D

Distributive Law
A.(B + C)=AB + AC A + (B.C) = (A + B).(A + C)

F = WX.(Y + 2) F=WX+(Y.2)
F = WXY + WXZ F = (WX + Y).(WX + 2)
G = B'.(AC + AD) G=B'+(A.C.D)
G=ABC+ABD G =(B'+A).(B'+ C).(B' + D)
H=A.WX+WX'+YZ) H=A+((WX).(WX))

H=AWX+ AWX' + AYZ H = (A + W'X).(A + WX)

Absorption (Covering)

A+AB=A A.(A+B)=A
F=ABC + A’ F=A"(A"+BC)
F=A F=A
G=XYZ+XY'Z+XYZ +XZ G=XZ(XZ+Y+Y"
G=XYZ+ XZ+ XY'Z G=XZ.(XZ+Y)
G=XZ+XY?Z G=XZ
H=D + DE + DEF H=D.(D + E + EF)
H=D

H=D

Simplification
A+AB=A+B

F = (XY + 2).(YW + Z'V") + (XY + 2)
F=YW+2ZV + (XY + 2)

A(A'+)=A.B

G=(X+Y)((+tY)+(W2)
G=(X+Y).WZ

Logic Adjacen y (Combining)
AB+ B'=A

F = (X +Y).(WXZ) + (X +Y).(WXZ)
F=(+Y)

(A+B).(A+B)=A

G = (XY + X'Z)).(XY + (X'Z')")
G = XY

Boolean Algebra

Exa ple:

Using Boolean Algebra, simplify the following
Boolean e pression.

F(A,B,C)=A'B.C+AB.C+AB.C

Boolean Algebra

Exa ple:

Using Boolean Algebra, simplify the following
Boolean e pression.

F(A,B,C) = (A'+B'+C').(A'+B+C").(A+B'+C")

DeMorgan's Laws

« Can be stated as follo s:

o The complement of the product (AND) is the
sum (OR) of the complements.

(X.Y)=X"+Y'

o T'he complement of the sum (OR) is the
product (AND) of the complements.

(X+Y)=X.Y'
« Easily generalized to n variables.
« Can be proven using a Truth table

Proving DeMorgan's Law

(X.Y)=X+Y

gk W MRS RE T R e T
0 0 () 1 1|1 1
0 1 () 1 110 1
| () 1 0|1 1
1 1 1 () 0] 0 ()

DeMorgan's Theorems

X1
X9
X

ED@D

>o— "
w} < -

Importance of Boolean Algebra

« Boolean Algebra is used to simplify Boolean
expressions.

— Through application of the Laws and Theorems
discussed

« Simpler expressions lead to simpler circuit realization,
which, generally, reduces ost, area requirements, and
power consumption.

« The objective of the digital circuit designer is to design
and realize optimal digital ircuits.

Algebraic Simplification
. Justification for simplifying Boolean expressions:

— Reduces the cost associated with realizing the
expression using logic gates.

— Reduces the area (i.e. silicon) required to fabricate the
switching function.

— Reduces the power ¢ onsumption of the circuit.

ECE - Digital Electronics 39

« In general, there is no easy way to determine when a
Boolean expression has been simplified to a minimum
number of terms or minimum number of literals.

— No unique solution

Algebraic Simplification

. Boolean (or Switching) expressions can
be simplified using the following methods:

1. Multiplying out th e expression

2. Factoring the exp r ession

Combining terms of the expression
Eliminating terms in the expression

Eliminating literals in the expression

S

Adding redundant terms to the expression

As we shall see, there are other tools that can be used to simplify Boolean
Expressions. Namely, Karnaugh Maps.

ECE - Digital Electronics

41

Digital Systems:
Combinational Logic Circuits

Objectives
—

e Convert a logic expression into a sum-of-products
expression.

e Perform the necessary steps to reduce a sum-of-

products expression to its simplest form.
e Use Boolean algebra and the Karnaugh map as tools
to simplify and design logic circuits.

e Explain the operation of both exclusive-OR and
exclusive-NOR circuits.

e Design simple logic circuits without the help of a truth
table.

Objectives

(cont’d)
S

e Implement enable circuits.

e Cite the basic characteristics of TTL and CMOS digital
ICs.

e Use the basic troubleshooting rules of digital systems.

Deduce from observed results the faults of
malfunctioning combinational logic circuits.

Describe the fundamental idea of programmable logic
devices (PLDs).

Outline the steps involved in programming a PLD to
perform a simple combinational logic function

Combinational
Logic Circuits

e The logic level at the output depends on the
combination of logic levels present at the
Inputs.

e A combinational circuit has no memory, so its
output depends only on the current value of its
Inputs.

e We will not spend a great deal of time discussing
how to troubleshoot the
combinational circuits. (That’s what the lab is
for.)

Sum-of-Products Form

e Sum =2 OR
® Product 2 AND

® Each of the sum-of-products expression consists of two
or more AND terms that are ORed together.

® Examples: ABC+A’BC’
AB+A’BC’+C’D’+D
® Note that one inversion sign cannot cover more than
one variable in a term. AB is not allowed.

Product-of-Sums Form
7

® Each of the product-of-sums expression
consists of two or more OR terms that are

ANDed together.
® Examples: (A+B’+C)(A+C)
(A+B’)(C’+D)F
e Will use sum-of-products form in logic circuit
simplification.

Simplifying Logic Circuits
—

® (Goal: reduce the logic circuit expression to a
simpler form so that fewer gates and
connections are required to build the circuit.

e Example: 4.1(a) and 4.1(b) are equivalent, but
4-1(b) is much simpler.

Example 4.1
-

| |

Aoz o _ ==
o D D;Dj

[z=LEBC+AE (AC)
B

A

N ABC
- by | ot
(&)
B "~ B+C
C o {>(# o }-j
Ao z=1 (B+C)

(b)

Circuit Simplification Methods
—

® Boolean algebra: greatly depends on
Inspiration and experience.

e Karnaugh map: systematic, step-by-step
approach.

® Pros and Cons

Algebraic Simplification
-

® Use the Boolean algebra theorems introduced
in Chapter 3 to help simplify the expression for
a logic circuit.

® Based on experience, often becomes a trial-
and-error process.

® No easy way to tell whether a simplified
expression is in its simplest form.

Two Essential Steps
S

® The original expression is put into the sum-of-
products form by repeated application of
DeMorgan’s theorem and multiplication of
terms.

® The product terms are checked for common
factors, and factoring is performed whenever
possible.

Examples 4-1 to 4-4
.

Original Simplified

ABC+AB’(A’C’)’ A(B’+C)

ABC+ABC’+AB’C

A(B+C)

A’C(A’BD) +A’BC’D’+AB’C

B’C+A’D’(B+C)

(A’+B)(A+B+D)D’

BD’

Examples 4-5, 4-6
o]

o (A’+B)(A+B’): equivalent form A’B’+AB

e AB’C+A’BD+C’D’: cannot be simplified further.

Designing Combinational Logic
Circuits

1.
2.

Set up the truth table.

Write the AND term for each case where the
outputis a 1.

Write the sum-of-products expression for the
output.

Simplify the output expression.
Implement the circuit for the final expression.

Example 4-8
S

® Design a logic circuit that is to produce a HIGH
output when the voltage (represented by a
four-bit binary number ABCD) is greater than
6V.

Example 4-9
S

® Generate the STOP signal and energize an
indicator light whenever either of the following
conditions exists: (1) there is no paper in the
paper feeder tray; or (2) the two micro-switches
In the paper path are activated, indicating a
jam.

Karnaugh Map Method
o]
® A graphical device to simplify a logic
expression.

e Will only work on examples with up to 4 input
variables.

e From truth table to logic expression to K map.

® Figure 4.11 shows the K map with 2,3 and 4
variables.

Looping
-

e The expression for output X can be simplified by properly
combining those squares in the K map which contain 1s.
The process of combining these 1s is

called looping.
e Looping groups of two (pairs) - eliminate 1 variable
e Looping groups of four (quads) - eliminate 2 variables

e Looping groups of eight (octets)—> eliminate 3 variables
e See Figure 4-12 to 4-14.

Complete Simplification Process

e Step 1: Construct the K map and places 1s in those
squares corresponding to the 1s in the truth table.
Places Os in the other squares.

e Step 2: Examine the map for adjacent 1s and loop
those 1s which are not adjacent to any other 1s.
(isolated 1s)

e Step 3: Look for those 1s which are adjacent to only
one other 1. Loop any pair containing such a 1.

e Step 4: Loop any octet even when it contains some 1s
that have already been looped.

Complete

Simplification Process
c.-

e Step 5: Loop any quad that contains one or
more 1s that have not already been looped,
making sure to use the minimum number of

loops.

e Step 6: Loop any pairs necessary to include
any 1s have not already been looped, making
sure to use the minimum number of loops.

e Step 7: Form the ORed sum of all the terms
generated by each loop.

Filling K Map
from Output Expression
-

e \What to do when the desired output is
presented as a Boolean expression instead of a
truth table?

e Step 1: Convert the expression into SOP form.

e Step 2: For each product term in the SOP
expression, place a 1 in each K-map square
whose label contains the same combination of
input values. Place a 0 in other squares.

e Example 4-14: y=C’(A’B’D’+D)+AB’C+D’

Don’t-Care Conditions

e Some logic circuits can be designed so that
there are certain input conditions for which
there are no specified output levels.

e A circuit designer is free to make the output for
any don’t care condition eitheraOora 1in
order to produce the simplest output
expression.

e Figures 4-18,19.

Exclusive-OR

e Exclusive-OR (XOR)

X = A’B+AB’
e Timing diagram

) -

~[=]o|o|>| X

— 1 O|—=10 |0

O|l= | |O|X

Exclusive-NOR

e Exclusive-NOR (XNOR)

x = (A’B+AB’)’ T

—_ - | OO
— 1O =10 |0
OO |—=|X

Example 4-17
-

® Design a logic circuit, using X1, Xq, y1and y
iInputs, whose output will be HIGH only when
the two binary numbers XXy and y1yo are equal.

® Hint: use XNOR gates (Figure 4-23)

i
nuber — ‘
XU, _ :

0=~

—

| —
Binary Vle———
nurber v0 . ——

Z

Using XNOR to Simplify Circuit
Implementation

® Example 4-18

L1
>°-L|- ABED 1%
e T
l_ z=ABCD+ABCD+AD
b) ABCD

aD

o 0 mw

B oo ——) > 3
s j — "\ AD (BeC) &
S / LE |
(= = z=AD (B&C) +AD

Parity Generator

Even-parity C

e Each of the basic logic gates can be used to
control the passage of an input logic signal
through to the output.

e A: input, B: control (Figure 4-26)

e The logic level at the control input determines
whether the input signal is enabled to reach the
output or disabled from reaching the output.

Basic Characteristics of Digital ICs
c_—

® Digital ICs are a collection of resistors, diodes
and transistor fabricated on a single piece of
semiconductor material called a substrate,
which is commonly referred to as a chip.

® The chip is enclosed in a package.
e Dual-in-line package (DIP)

Integrated

Circuits
o]
Complexity Number of Gates
Small-scale integration(SSI) <12

Medium-scale integration(MSI) 12 t0 99

Large-scale integration(LSI) 100 to 9999

Very large-scale integration(VLSI) | 10,000 to 99,999

Ultra large-scale integration(ULSI) | 100,000 to 999,999

Giga-scale integration (GSI) 1,000,000 or more

Bipolar and Unipolar Digital ICs

e Categorized according to the principal type of
electronic component used in their circuitry.

e Bipolar ICs are those that are made using the
bipolar junction transistor (PNP or NPN).

e Unipolar ICs are those that use the unipolar
field-effect transistors (P-channel and N-
channel MOSFETS).

IC Families
o]

e TTL Family: bipolar digital ICs (Table 4-6)

e CMOS Family: unipolar digital ICs (Table 4-7)

e TTL and CMOS dominate the field of SSI and
MSI devices.

TTL

Family
c |

TTL Series Prefix Example
IC

Standard TTL 74 7404
(hex
inverter)

Schottky TTL 74S 74504

Low-power 74LS 741. S04

Schottky TTL

Advanced Schottky 74AS 74AS04
TTL

Advanced low- power] 74ALS 74ALS04
Schottky TTL

CMOS
Family

CMQOS Series Prefix :E(;(ample
Metal-gate CMOS 40 4001
Metal-gate, pin-compatible with TTL 74C 74C02
Silicon-gate, pin-compatible with TTL, high- 74HC 74HCO02
speed

Silicon-gate, high-speed, pin- 74HCT 74HCTOZ
compatible and electrically compatible

with TTL

Advanced-performance CMQOS, not pin or electrically| 74AC 74AC02
compatible with TTL

Advanced-performance CMOS, not pin but TJ4ACT J4ACTO2
electrically compatible with TTL

Power and Ground
/7

® To use digital IC, it is necessary to make
proper connection to the IC pins.

® Power: labeled V. for the TTL circuit, labeled
Vpp for CMQOS circuit.

e (Ground

Logic-level Voltage Ranges
—

For TTL devices, V¢ Is normally V.
For CMOS circuits, V» can range from 3-18V.
For TTL, logic O : 0-0,8V, logic 1:2-3V

For CMQOS, logic 0 : 0-1.5V, logic 1:3.5-5V

Unconnected Inputs
-

® Also called floating inputs.

e A floating TTL input acts like a logic 1, but
measures a DC level of between 1.4 and 1.8V.

e A CMOS input cannot be left floating.

Logic-Circuit Connection Diagrams
—

® A connection diagram shows all electrical
connections, pin numbers, IC numbers,
component values, signal names, and power
supply voltages.

® See Figure 4-32.

Troubleshooting Digital Systems
—

® Fault detection
® Fault isolation
® Fault correction

® Good troubleshooting techniques can be
learned only through experimentation and
actual troubleshooting of faulty circuits.

Troubleshooting Tools

® | ogic probe

® Oscilloscope
® | ogic pulser
e Current tracer

® andyour
BRAIN!

Indicator Light | Logic Level

OFF LOW

ON HIGH

DIM INTERMEDIATE
FLASHING PULSING

Lo

e Malfunction is the internal circuitry.

e Inputs or outputs shorted to ground or Vcc
(Figure 4.34, 4-35)

e Inputs or outputs open-circuited (Figure 4.36)

e Short between two pins (other than ground or
Vcc): whenever two signals that are supposed
to be different show the same logic-level
variations.

External

Faults
«

e Open signal lines:Broken wire, Poor solder connection,
Crack or cut trace on a printed circuit board, Bend or
broken pin on a IC, faulty IC socket.

e Shorted signal lines: sloppy wiring, solder bridges,
Incomplete etching.

e Faulty power supply

e Output loading: when an output is connected to too
many IC inputs.

Programmable Logic Device
.

® PLD is an integrated circuit that contains a
particular arrangement of logic gates. (Figure
4.41)

e Useful in implementing complex circuits
containing tens or thousands of logic gates.

® Sum-of-products form

Sequential Digital Circuits

Sequential circuits are digital circuits in which the outputs
depend not only on the current inputs, but also on the previous
state of the output.

They basic sequential circuit elements can be divided in two
categories:

Level-sensitive (Latches) — High-level sensitive
— Low-level sensitive
Edge-triggered (Flip-flops)
— Rising (positive) edge triggered
— Falling (negative) edge triggered
— Dual-edge triggered

Digital Logic for Computers - Frederick

The Set/Reset (SR) Latch

The Set/Reset latch is the most basic unit of sequential digital circuits. It has two
inputs (S and R) and two outputs outputs Q and Q’. The two outputs must always be
complementary, 1.e if Q is 0 then Q’ must be 1, and vice-versa. The S input sets the Q
output to a logic 1. The R input resets the Q output to a logic 0.

Digital Logic for Computers 2

Circuit Diagram

Truth Table
S R | Q+ Q'+ Function
0 0| Q Q' |Latch
0 110 | 1 Reset
1 0|1 O Set
1 110 o | legal
Logic Symbol
S Q
-~ 1R Ql—

The Gated Set/Reset (SR) Latch

Digital Logic

To be able to control when the S and R inputs of the SR latch can be applied to the latch
and thus change the outputs, an extra input is used. This input is called the Enable. If the
Enable 1s 0 then the S and R inputs have no effect on the outputs of the SR latch. If the
Enable 1s 1 then the Gated SR latch behaves as a normal SR latch.

Circuit Diagram Truth Table Truth Table
S EN S R |Q+ EN S R |Q+ Function
}} . o
EN> + 0 0 O0/(Q 0 X X
ol A 0 0 1]|q 1 0 O
R Q Q
}} (o>
0O 1 0/(Q 1 0 1
0 1 11Q 1 1 0
Logic Symbol 1 o o0la 1 1 1
—s Qf— 1 0 1o
TEN 1 1 0|1
rer 1 1 1|y

for Computers

Digital Logic for Computers 4

Digital Logic

SR Latch :- Example

Complete the timing diagrams for :
(a) Simple SR Latch
(b) SR Latch with Enable input.

Assume that for both cases the Q output is initially at logic zero.

Digital Logic for Computers

(@) (b)

The Data (D) Latch

A problem with the SR latch is that the S and R inputs can not be at logic 1 at the
same time. To ensure that this can not happen, the S and R inputs can by connected

Digital Logic for Computers 7

through an inverter. In this case the Q output is always the same as the input, and the
latch 1s called the Data or D latch. The D latch is used in Registers and memory
devices.

5 EN D Q| Q+ EN D | Q+ Function
}s Q Q> 0 O
EN 0 0 0]aQ 0 1
Circuit Diagram 0 1 0] q 1
Truth Table Truth Table
0 1 1
Q
1. 0 o|©O
Logic | . Symbol
J D Q Y 1 0 1]
N 1 1 o] 1
Q_
1 1 1 1

Digital Logic for Computers 8

The JK Latch

Another way to ensure that the S and R inputs can not be at logic 1 simultaneously, 1s
to cross connect the Q and Q’ outputs with the S and R inputs through AND gates.
The latch obtained is called the JK latch. In the J and K inputs are both 1 then the Q
output will change state (Toggle) for as long as the Enable 1, thus the output will be
unstable. This problem is avoided by ensuring that the Enable is at logic 1 only for a
very short time, using edge detection circuits.

Digital Logic for Computers 9

Circuit Diagram

>

(>
Co——

Logic Symbol

—J

— EN

— K

Truth Table Truth Table

EN J K EN J K| Q+ Function
0 X X 0 X
1 0 0
1 0 0
1 0 1
1 0 0 1 1 0
1 0 1 11
1 0 1
1 1 0
1 1 0
1 1 1
1 1 1

Digital Logic for Computers

10

Latches and Flip-Flops

Latches are also called transparent or level triggered flip flops,
because the change on the outputs will follow the changes of the
inputs as long as the Enable input is set.

Edge triggered flip flops are the flip flops that change there outputs
only at the transition of the Enable input. The enable 1s called the
Clock input.

Edge Detection Circuits

Digital Logic for Computers 11

Edge detection circuits are used to detect the transition of the Enable from logic 0 to
logic 1 (positive edge) or from logic 1 to logic 0 (negative edge). The operation of the
edge detection circuits shown below 1s based on the fact that there 1s a time delay
between the change of the input of a gate and the change at the output. This delay i1s
in the order of a few nanoseconds. The Enable in this case 1s called the Clock (CLK)

Positive Edge Detection Negative Edge Detection

EN

- — = T
o =

Digital Logic for Computers 12

The JK Edge Triggered Flip Flop

The JK edge triggered flip flop can be obtained by inserting an edge detection circuit at
the Enable (CLK) input of a JK latch. This ensures that the outputs of the flip flop will
change only when the CLK changes (0 to 1 for +ve edge or 1 to 0 for —ve edge)

Digital Logic 13

Positive Edge JK Flip Flop Negative Edge JK Flip Flop

Q o> Q a>
Q= 0> a &>
CLK K |Qn+1| Functi CLK K |Qn+1| Functi
Logic Symbol J Qn+1| Function Logic Symbol J Qn+1 Function
7 o | L X X]a 1 o |4 X X
CLK—> o oja CLK -G> oo
f 1 01 L1 o

for Computers

Digital Logic for Computers 14

The D Edge Triggered Flip Flop

The D edge triggered flip flop can be obtained by connecting the J with the K inputs
of a JK flip through an inverter as shown below. The D edge trigger can also be

obtained by connecting the S with the R inputs of a SR edge triggered flip flop
through an inverter.

Positive Edge D Flip Flop

D T J Q Q
CLK >
\—JXO—K Q QD
CLK D| Qn+1 Function
Logic Symbol
—p ap— | 1O
CLK—]>
| 1
Ql_

Negative Edge D Flip Flop

D T J Q Q
CLK o>
\—{ So—1K Q o>
Logic Symbol [CLK D|Qn+1| Function
—D Q— X
CLK O> 0

Digital Logic for Computers

16

10
Digital Logic for Computers

The Toggle (T) Edge Triggered Flip Flop

The T edge triggered flip flop can be obtained by connecting the J with the K inputs
of a JK flip directly. When T 1s zero then both J and K are zero and the Q output does
not change. When T is one then both J and K are one and the Q output will change to
the opposite state, or toggle.

Positive Edge T Flip Flop

T » I Q a>
CLK >
« a—{a>
Logic Symbol CLK T |Qn+1| Function
T e | L X |a
CLK—]> t 0 | Q
Q- t Q

Negative Edge T Flip Flop

T » J Q Q>
CLK a>
K Q a>
Logic Symbol
CLK Qn+1] Function
CLK—C> Q
— X
sl | T
Q
'
o
v

Digital Logic for Computers

18

Digital Logic for Computers

11

Flip Flops with asynchronous inputs (Preset and Clear)

Two extra mputs are often found on flip flops, that either clear or preset the output.
These inputs are effective at any time, thus are called asynchronous. If the Clear is at

Positive Edge JK Flip Flop with Preset and Clear

CLEAR

CLK PR CLR J K |Qn+1| Function

£ T O _ 0 X X
—Y Q= 0 1 X X| 1
—> 1 0 X X| 0
K af 1 1 00| q
O 1 1 0 1 0
1 1 10 1
1 1 1 1 Q

Digital Logic for Computers

20

logic 0 then the output is forced to 0, irrespective of the other normal inputs. If the
Preset 1s at logic 0 then the output is forced to 1, irrespective of the other normal
inputs. The preset and the clear inputs can not be 0 simultaneously. In the Preset and
Clear are both 1 then the flip flop behaves according to its normal truth table.

Data (D) Latch :- Example

Complete the timing diagrams for :
(a) D Latch
(b) JK Latch

Assume that for both cases the Q output is initially at logic zero.

(a) (b)
Enable — - Enable —] | L
Data (D) — | - J : -
« 1 T L

JK Edge Triggered Flip Flop :- Example

Complete the timing diagrams for :

(a) Positive Edge Triggered JK Flip Flop

(b) Negative Edge Triggered JK Flip Flop

Assume that for both cases the Q output is initially at logic zero.

(@) (b)

ck — Ll L i . CLK

||||||
'''
1

D and T Edge Triggered Flip Flops :- Example

Complete the timing diagrams for :

(a) Positive Edge Triggered D Flip Flop
(b) Positive Edge Triggered T Flip Flop
(¢) Negative Edge Triggered T Flip Flop

(a)
e | LILE LD LELTL
mil e Rl e
b ! | B
o i
(c)
CLK |
T -
Q

Digital Logic for Con(%puters

(b)
CLK 1 : 1 1
N
D — —_
Q _E___L_I__I_ ______ i___JI _________________________________
(d)
CLK
T

24

|(d) Negative Edge Triggered D Flip Flop

Digital Logic for Computers

25

JK Flip Flop With Preset and Clear:- Example

Complete the timing diagrams for :

(a) Positive Edge Triggered JK Flip Flop

(b) Negative Edge Triggered JK Flip Flop.

Assume that for both cases the Q output is initially at logic zero.

Digital Logic for Computers

26

(@

[N |
1t
LI

Digital Logic for Computers

27

Level Triggered Master Slave JK Flip Flop

A Master Slave flip flop is obtained by connecting two SR latches as shown below. This flip
flop reads the inputs when the clock is 1 and changes the output when the clock 1s at logic
Zero.

Master Slave
L Logic Symbol Truth Table
}) s aq J—} s q _3 -} CLK J K |Q Function
CLK { ek J1 0 | 0
a Q S Q 0 1
K HR 9n } Roa Q> _k f It
B i o
[>o o1
(a) Positive Master Slave JK Flip Flop (b) Negative Master Slave JK Flip Flop
CLK 1 1 i 1 i i] 1 1 i 1 1 1 1] 1 I_ CLK [
J R - J
AL«
Q —f--bebdedeeebdeedecddido bbb do Q

Digital Logic for Computers 28

Digital Logic for Computers

29

Edge Triggered Master Slave JK Flip Flop

A Master Slave flip flop is obtained by connecting two SR latches as shown below. This flip
flop reads the inputs when the clock is 1 and changes the output when the clock is at logic
Zero.

Master Slave
L Logic Symbol Truth Table
J > CLK J K| Q Function
Hs a s ar# 0> —s 2
CLK > —> S ¥ 0 O
R Q R Q q Q v+ 0 1
oL O L &
| 410
o ol
(a) Positive Master Slave JK Flip Flop (b) Negative Master Slave JK Flip Flop
ck — ik ik L L) L e L
J - J -

Digital Logic for Computers 30

Sequential circuit example 1

Digital Logic for Computers

31

DSET Q—

CLR Q

cock f L4 [+ L4 ¢ L4 L+ L4 L+ Lt

AO

AT

Digital Logic for Computers 32

Sequential circuit example 2

Digital Logic for Computers

33

Q|

Sequential circuit example 3

Digital Logic for Computers

34

Digital Logic for Computers

35

] HHHHHfHHﬂHJH

CP

Q SET D/T

Q cr

FULL ADDER

36

Digital Logic for Computers

Digital Logic for Computers

37

Digital Logic for Computers

	POSITIONAL NOTATION
	1.1-1 Conversion of Base

	BINARY ARITHMETIC
	1.2-1 Binary Addition
	1.2-3 Complements
	and the diminished radix complement is defined as
	1.2-4 Shifting
	1.2-5 Binary Multiplication
	1.2-6 Binary Division

	BINARY CODES
	1.3-1 Binary-Coded-Decimal Numbers

	GEOMETRIC REPRESENTATION OF BINARY NUMBERS
	1.4-1 Distance
	1.4-2 Unit-distance Codes
	1.4-3 Symmetries of the n-Cube

	ERROR-DETECTING AND ERROR-CORRECTING CODES
	1.5-1 Single-Error-Correcting Codes
	1.5-2 Double-Error-Detecting Codes
	REFERENCES
	PROBLEMS

	CHAPTER 2 PREVIEW
	COUNTING IN
	PLACE VALUE
	BINARY TO DECIMAL CONVERSION
	CONVERSION
	Decimal 17 = 10001 ELECTRONIC TRANSLATORS
	ELECTRONIC DECODING: BINARY TO DECIMAL
	HEXADECIMAL NUMBER SYSTEM
	DECIMAL TO HEXADECIMAL CONVERSION
	HEXADECIMAL TO DECIMAL CONVERSION
	OCTAL NUMBERS
	PRACTICAL SUGGESTION ON NUMBER SYSTEM CONVERSIONS
	Truth T ables
	Boolean Algebra
	Complete Simplification Process
	Don’t-Care Conditions
	Enable/Disable Circuits
	Bipolar and Unipolar Digital ICs
	⚫ Unipolar ICs are those that use the unipolar field-effect transistors (P-channel and N- channel MOSFETs).

	Internal IC Faults
	The Set/Reset (SR) Latch
	The Gated Set/Reset (SR) Latch
	SR Latch :- Example
	The Data (D) Latch
	The JK Latch
	Latches and Flip-Flops
	Edge Detection Circuits
	The JK Edge Triggered Flip Flop
	The JK edge triggered flip flop can be obtained by inserting an edge detection circuit at the Enable (CLK) input of a JK latch. This ensures that the outputs of the flip flop will change only when the CLK changes (0 to 1 for +ve edge or 1 to 0 for –ve...

	The D Edge Triggered Flip Flop
	The Toggle (T) Edge Triggered Flip Flop
	Flip Flops with asynchronous inputs (Preset and Clear)
	Data (D) Latch :- Example
	JK Edge Triggered Flip Flop :- Example
	D and T Edge Triggered Flip Flops :- Example
	JK Flip Flop With Preset and Clear:- Example
	Level Triggered Master Slave JK Flip Flop
	Edge Triggered Master Slave JK Flip Flop

	Sequential circuit example 1
	Sequential circuit example 2

