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NUMBER SYSTEMS  

AND CODES  

  

Arithmetic operations using decimal numbers are quite common. However, in logical 

design it is necessary to perform manipulations in the so-called binary system of num- bers 

because of the on-off nature of the physical devices used. The present chapter is intended 

to acquaint the reader with the fundamental concepts involved in dealing with number 

systems other than decimal. In particular, the binary system is covered in con- siderable 

detail.  

  

  
   POSITIONAL NOTATION  
  

An ordinary decimal number can be regarded as a polynomial in powers of 10. For ex- 

ample, 423.12 can be regarded as  4 102 + 2 101  + 3 100   + 1 101   + 2 102. Decimal 

numbers like this are said to be expressed in a number system with base, or radix, 10 

because there are 10 basic digits (0, 1, 2, …, 9) from which the number system is 

formulated. In a similar fashion we can express any number N in a system using any base 

b.    We shall write such a number as (N)b . Whenever (N)b   is written, the convention of 

always expressing b in base 10 will be followed. Thus (N)b = (pn pn1    … p1p0 . p 1p 2 

… pm )b where b  is an integer greater than 1 and 0 <  pi    <   b 1. The value of a number 

represented in this fashion, which is called positional notation, is given by  

 (N)b = pn bn + pn-1 bn-  + … + p0 b0 + p-    b-   (1.1-1)  

+ p-  b-+ … + pm  bm
  

n  

 (N)b  =      pi bi
  (1.1-2)  

i = -m  

  

  

For decimal numbers, the symbol “.” is called the decimal point; for more gen- eral 

base-b numbers, it is called the radix   point.   That portion of the number to the right of 
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the radix point (p-  p-… pm ) is called the fractional part, and the portion to the left of 

the radix point (pnpn 1 … p0 ) is called the integral part.  

Numbers expressed in base 2 are called binary numbers. They are often used in 

computers since they require only two coefficient values. The integers from 0 to 15 are 

given in Table 1.1-1 for several bases. Since there are no coefficient values for the range 

10 to b 1 when b > 10, the letters A, B, C, . . . are used. Base-8 numbers are called octal   

numbers,   and base-16 numbers are called   hexadecimal   numbers. Octal and 

hexadecimal numbers are often used as a shorthand for binary numbers. An octal number 

can be converted into a binary number by converting each of the octal co- efficients 

individually into its binary equivalent. The same is true for hexadecimal numbers. This 

property is true because 8 and 16 are both powers of 2. For numbers with bases that are not 

a power of 2, the conversion to binary is more complex.  

  
1.1-1 Conversion of Base  

  
To make use of nondecimal number systems, it is necessary to be able to convert a number 

expressed in one base into the correct representation of the number in another base. One 

way of doing this makes direct use of the polynomial expression (1.1-1). For example, 

consider the binary number (1011.101)2 . The corresponding polynomial expression is  

1   23  +  0    22    +  1    21    +  1    20    +  1    2 1    +  0  2 2  +  1    2 3  

or 8 + 2 +  1 + 1/2 + 1/8 or       11 + 5/8 = 11.625  

  

 TABLE 1.1-1  Integers in various bases  

 

2 3  4  5  …  8  …  10  11  12 

 …  16  

  0001  001  01  01    01    01  01  01    1  

  0010  002  02  02   02   02  02  02   2  

  0011  010  03  03   03   03  03  03   3  

  0100  011  10  04   04   04  04  04   4  

  0101  012  11  10   05   05  05  05   5  

  0110  020  12  11   06   06  06  06   6  

N )b  0111  021  13  12   07   07  07  07   7  

  1000  022  20  13   10   08  08  08   8  

  1001  100  21  14   11   09  09  09   9  

  1010  101  22  20   12   10  0A  0A   A  

  1011  102  23  21   13   11  10  0B   B  
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This technique of directly evaluating the polynomial expression for a number is a 

general method for converting from an arbitrary base   b1   to another arbitrary base b2. For 

convenience, it will be called the polynomial   method.        This method consists in:  

  

1. Expressing the number (N)b1 as a polynomial, with base-b2 numbers used in the 

polynomial.  

2. Evaluating the polynomial, base-b2 arithmetic being used.  

This polynomial method is most often used by human beings whenever a number is 

to be converted to base 10, since it is then possible to use decimal arithmetic.  

This method for converting numbers from one base to another is the first example of 

one of the major goals of this book: the development of algorithms. In general terms, an 

algorithm is a list of instructions specifying a sequence of operations which will give the 

answer to any problem of a given type. The important characteristics of an algorithm are: 

(1) that it is fully specified and does not rely on any   skill or intuition on the part of the 

person applying it and (2) that it always works, (i.e., that a correct answer is always 

obtained.) The notion of an algorithm is discussed in more detail in Section 1.1 of [Knuth 

68].  

It is not always convenient to use base-b2 arithmetic in converting from base-b1 to 

base-b2 . An algorithm for carrying out this conversion by using base-b1 arithmetic will be 

discussed next. This discussion is specifically for the situation in which b1 =  

10, but it can be extended easily to the more general case. This will be called the it- erative 

method, since it involves iterated multiplication or division.  

In converting (N)10  to (N)b the fraction and integer parts are converted separately. 

First, consider the integer part (portion to the left of the decimal point). The general 

conversion procedure is to divide (N)10  by b, giving (N) 10 /b and a remainder. The 

remainder, call it p , is the least significant (rightmost) digit of (N) . The next least  
 0  b  

significant digit, p1  , is the remainder of (N) 10 /b divided by b, and succeeding digits are 

obtained by  continuing this process. A convenient form for carrying out this conversion is 

illustrated in the following example.  

  
Example 1.1-1  

  1100  110  30  22   14   12  11  10   C  

  1101  111  31  23   15   13  12  11   D  

  1110  112  32  24   16   14  13  12   E  

  1111  120  33  30   17   15  14  13   F  
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(a) (23)10 = (10111)2   (Remainder)  

    1  

    1  

    1  

    0  

    1  

        

(b) (23)10 = (27)8   (Remainder)  

    7  

    2  

 1.1  Positional Notation  

  

  

  

(c) (410)10 = (3120)5 (Remainder)  

 0  

 2  

 1  

 
3  

  

Now consider the portion of the number to the right of the decimal point, i.e., the 

fractional part. The procedure for converting this is to multiply (N)10 (fractional) by b. If 

the resulting product is less than 1, then the most significant (leftmost) digit of the fractional 

part is 0. If the resulting product is greater than 1, the most significant digit of the fractional 

part is the integral part of the product.   The next most significant digit is formed by 

multiplying the fractional part of this product by b and taking the integral part. The 

remaining digits are formed by repeating this process. The process may or may not 

terminate. A convenient form for carrying out this conversion is illustrated be- low.  

  

Example 1.1-2.  

  

2  23 

2  11 

2  5 

2  2 

2  1 

  0 

8  23 

8  2 

  0 

5  410  

5  82  

5  16  

5  3  

  0  

  (c) (27.68)10 = (11011.101011 . . . )2  

  

= (33.53 . . . )8    

0.68 x 2 = 1.36  
0.1  
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(a) (0.625)10 = (0.5)8 

  0.625 x 8 = 5.000 

0.5  

(b)(0.23)10 = (0.001110 . . . )2  0.23 x 2 = 0.46 0.0  

    0.46 x 2 = 0.92 0.00  

    0.92 x 2 = 1.84 0.001  

    0.84 x 2 = 1.68 0.0011  

    0.68 x 2 = 1.36 0.00111  

= 0.72 0.001110 
…

      0.36 x 2 

2 0.10  

2 0.101  

2 0.1010  

2 0.10101  

   
0  1  0.76 x 2 = 1.52  0.101011

 …  

          

 0.68 x 8 = 5.44 0.5     

   3  0.44 x 8 = 3.52 0.53 …  

   3     

This example illustrates the simple relationship between the base-2 (binary) sys- tem 

and the base-8 (octal) system.    The binary digits, called bits, are taken three at a time in 

each direction from the binary point and are expressed as decimal digits to give the 

corresponding octal number. For example, 101 in binary is equivalent to 5 in decimal; so 

the octal number in part (c) above has a 5 for the most significant digit of the fractional 

part. The conversion between octal and binary is so simple that the octal expression is 

sometimes used as a convenient shorthand for the corresponding binary  

number.  

  

  

When a fraction is converted from one base to another, the conversion may not 

terminate, since it may not be possible to represent the fraction exactly in the new base with 

a finite number of digits. For example, consider the conversion of (0.1)3 to a base-10 

fraction.   The result is clearly (0.333 …)10, which can be written as (0.3)10 to indicate 

that the 3's are repeated indefinitely. It is always possible to represent the result of a 

   2  27   

13  1  0.36 x 2 = 0.72  

6  1  0.72 x 2 = 1.44  

3  0  0.44 x 2 = 0.88  

1  1  0.88 x 2 = 1.76  

8  27 

8  3 

  0 
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conversion of base in this notation, since the nonterminating fraction must consist of a 

group of digits which are repeated indefinitely. For example, (0.2)11 = 2 x 111  = (0.1818 

…)10 = (0.018 )10.  

It should be pointed out that by combining the two conversion methods it is pos- sible 

to convert between any two arbitrary bases by using only arithmetic of a third base. For 

example, to convert (16)7 to base 3, first convert to base 10,  

(16)7  =  1  71   +  6    70   =  7  +  6  =  (13)10 Then 

convert (13)10 to base 3,  

  

   (Remainder)    

   1  (16)7 = (13)10 = (111)3  

   1    

   1    

For more information about positional number systems, the following references are 

good sources: [Chrystal 61] and [Knuth 69].  

  

   BINARY ARITHMETIC  
  

Many modern digital computers employ the binary (base-2) number system to represent 

numbers, and carry out the arithmetic operations using binary arithmetic. While a de- tailed 

treatment of computer arithmetic is not within the scope of this book, it will be useful to 

have the elementary techniques of binary arithmetic available. In performing decimal 

arithmetic it is necessary to memorize the tables giving the results of the elemen- tary 

arithmetic operations for pairs of decimal digits.    Similarly, for binary arithmetic the tables 

for the elementary operations for the binary digits are necessary.  

  
1.2-1 Binary Addition  

  
The binary addition table is as follows:  

  

 Sum  Carry  

 0 + 0 = 0  0  

0 + 1 = 1  0  

1 + 0 = 1  0  

1 + 1 = 0  1  

Addition is performed by writing the numbers to be added in a column with the binary 

points aligned.   The individual columns of binary digits, or bits, are added in the usual 

order according to the above addition table.    Note that in adding a column of  

1.2 Binary Arithmetic  

3  13 

3  4 

3  1 

3  0 
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bits, there is a 1 carry for each pair of 1's in that column. These 1 carries are treated as bits 

to be added in the next column to the left. A general rule for addition of a column of 

numbers (using any base) is to add the column decimally and divide by the base. The 

remainder is entered as the sum for that column, and the quotient is carried to be added in 

the next column.  

  

 Example 1.2-1    
  

Base 2  

  
 Carries:  10011 11  

  

  1001.011    = (9.375)10  

    1101.101     =(13.625)10  
  10111.000   = (23)10 = Sum  

  

1.2-2  Binary Subtraction  

  

The binary subtraction table is as follows:  

  

 Difference  Borrow  

0 0 = 0  0  

0 1 = 1  1  

1 0 = 1  0  

1 1 = 0  0  

  

Subtraction is performed by writing the minuend over the subtrahend with the bi- 

nary points aligned and carrying out the subtraction according to the above table. If a 

borrow occurs and the next leftmost digit of the minuend is a 1, it is changed to a 0 and the 

process of subtraction is then continued from right to left.  

 Base 2  Base 10  

 Borrow:  1  

 0   

Minuend Subtrahend  1\0  

01  

2  

1  

Difference  01  1  

If a borrow occurs and the next leftmost digit of the minuend is a 0, then this 0 is 

changed to a 1, as is each successive minuend digit to the left which is equal to 0. The first 

minuend digit to the left which is equal to 1 is changed to 0, and then the subtrac- tion 

process is resumed.  
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  Base 2  Base 10  

Borrow:   1     

  011    

Minuend  11\0\0\0  24  

Subtrahend  10001  17  

Difference  00111  7  

  

Borrow:  1 1    

  
Minuend  

01011   
1\0\1\0\0\0  40  

Subtrahend  011001  25  

Difference  001111  15  

  

  

1.2-3 Complements  

  
It is possible to avoid this subtraction process by using a complement representation for 

negative numbers. This will be discussed specifically for binary fractions, although it is 

easy to extend the complement techniques to integers and mixed numbers. The 2's 

complement (2B) of a binary fraction B is defined as follows:  

2B = (2 B)10    = (10 B)2  

Thus, 2(0.1101) = 10.0000 0.1101 = 1.0011. A particularly simple means of carry- ing out 

the subtraction indicated in the expression for 2(0.1101) is obtained by noting that 10.0000 

= 1.1111 + 0.0001.    Thus, 10.0000 0.1101 = (1.1111  0.1101) + 0.0001. The subtraction 

1.1111 0.1101 is particularly easy, since all that is neces- sary is to reverse each of the 

digits of 0.1101 to obtain 1.0010. Finally, the addition of 0.0001 is also relatively simple, 

and yields 1.0011.   In general, the process of forming 2B involves reversing the digits of B 

and then adding 0.00 … 01.  

The usefulness of the 2's complement stems from the fact that it is possible to ob- 

tain the difference A B by adding 2B  to A.   Thus, A + 2B = (A  + 10 B)2   = (10 + (A 

B))2 .   If (A B) > 0, then (10 + A B)2  will be 10 plus the positive fraction (A  

B). It is thus possible to obtain A B by dropping the leftmost 1 in A + 2B. For ex-  

ample,  

  

   

A =  0.1110  A =  0.1110  

 B =  0.1101  + 2B =   

   0.0001   
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If (A B) < 0, then A + 2B = (10  |A  B|)2, which is just equal to 2(A  B),  the  2's- 

complement representation of A B. For example,  

  A =  0.1101  A =  0.1101   

 B =  0.1110  + 2B =  1.0010  

   –0.0001   1.1111  2(0.0001) = 1.1111  

The 1's complement is also very commonly used. This is defined as  

  

  

If A + 1B is formed, the result is (A B  + 10   0.000 … 1)2. If (A  B)  >  0, this can 

be converted to A B by removing the (10)2 and adding a 1 to the least significant digit of 

A + 1B. This is called an end-around carry. For example:  

A =  0.1110  A =  0.1110  

B =  0.1101     + 1B  =  +1.0010  

 0.0001  A + 1B =  10.0000  

  

             

    End-around  

    carry  

  

  

 so that  A    B =  0.0001  

If (A B) < 0, then A + 1B will be the 1's complement of |A B|. For example,  

  A =  0.1101  A =  0.1101    

 B =  0.1110  1B =  1.0001    

 

1 1B = (10    0.000  …  1  B)2  

where the location of the 1 in 0.000 … 1 corresponds to the least significant digit of B. 

Since (10 0.000 … 1)2 is equal to 01.111 … 1, it is possible to form 1B by revers- ing 

the digits of B and adding a 1 before the radix point. Thus, 1(0.1101) = 1.0010.  

 1.2  Binary Arithmetic  
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   0.0001  A + 1B =  1.1110  1(0.0001) = 1.1110  

The radix complement of a base-b fraction F is defined as  

bF = (10 F)b  

and the diminished radix complement is defined as  

b 1F = (10 F   0.000 …  1)b  

Similar procedures hold for the formation of the complements and their use for subtrac- 

tion.  

When integers or mixed numbers are involved in the subtractions, the definitions of 

the complements must be generalized to  

bN = (100 … 0. N)b  

 and  b 1N = (100 … 0.   N    0.00 … 1)b  

where 100 … 0 contains two more digits than any integer to be encountered in the sub- 

tractions. For example, if (N)2 = 11.01, then  

  

 2(N)2 = 1000.00 11.01    

  =  111.11 11.01 + 0.01  

  =  100.10 + 0.01  

  =  100.11   

M =  11.10 
  

M =  11.10  

N =  11.01   2N =  100.11  

 0.01  1000.01  

  

  

Discard  



 

 

  

  
1.2-4 Shifting  

  
In carrying out multiplication or division there are intermediate steps which require that 

numbers be shifted to the right or the left. Shifting a base-b number k places to the right 

has the effect of multiplying the number by b-k
 , and shifting k places to the left is equivalent 

to multiplication by b+k
 . Thus, if n  

(N)b   = 


  pi b
i   = (pn pn-     …  p1 p0 .  p1 p2 … pm)b i =-m  

  

shifting (N)b k places to the left yields  

n  

(pn  pn-1    … p1 p0 p1  … pk  .  p k      … pm)b  = 


 pi bi+k
 i =-

m  

and  
 n  n  


 pi b i+k =  b k  


 pi bi  =  b k (N)b i =m 

 i =m  

A similar manipulation shows the corresponding situation for right shifts. Shifting 

the binary point k places (k positive for right shifts and negative for left shifts) in a bi- nary 

number multiplies the value of the number by 2k
 . For example,  

 (110.101)2  =  (6.625)10  

  
  (6.62 )   

 (1.10101)2  =   22  (6.625)10  =   10 = (1.65625)10  

  

 (11010.1)2   =  2+2 (6.625)10  =  (4  6.625)10  =   (26.5)10  

  

1.2-5 Binary Multiplication  
  

The binary multiplication table is as follows:   

0   0 = 0  

0   1 = 0  

1   0 = 0  

1   1 = 1  

The process of binary multiplication is illustrated by the following example:  

  

 110.10  Multiplicand  

10.1 Multiplier  
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 11010  Partial Product  

 00000  Partial Product  

  Partial Product  

 Sec. 1.2  Binary Arithmetic  9  

  

  

  

  

For every digit of the multiplier which is equal to 1, a partial product is formed consisting 

of the multiplicand shifted so that its least significant digit is aligned with the 1 of the 

multiplier. An all-zero partial product is formed for each 0 multiplier digit. Of course, the 

all-zero partial products can be omitted. The final product is formed by summing all the 

partial products. The binary point is placed in the product by using the same rule as for 

decimal multiplication: the number of digits to the right of the binary point of the product 

is equal to the sum of the numbers of digits to the right of the binary points of the multiplier 

and the multiplicand.  

The simplest technique for handling the multiplication of negative numbers is to use 

the process just described to multiply the magnitudes of the numbers. The sign of the 

product is determined separately, and the product is made negative if either the multiplier 

or the multiplicand, but not both, are negative. It is possible to carry out multiplication 

directly with negative numbers represented in complement form. This is usually done using 

a recoding scheme called Booth's Algorithm, [Waser 82], which also speeds up the 

multiplication.  

  

1.2-6 Binary Division  
  

Division is the most complex of the four basic arithmetic operations. Decimal long division 

as taught in grade school is a trial-and-error process. For example, in dividing 362 by 46 

one must first recognize that 46 is larger than 36 and then must guess how many times 46 

will go into 362. If an initial guess of 8 is made and the multiplication8 x 46 = 368 is carried 

out, the result is seen to be larger than 362 so that the 8 must be replaced by a 7. This 

process of trial and error is simpler for binary division because there are fewer possibilities 

in the binary case.  

To implement binary division in a digital computer a division algorithm must be 

specified. Two different algorithms, called restoring and nonrestoring division, are used.  

Restoring division is carried out as follows: In the first step, the divisor is subtracted 

from the dividend with their leftmost digits aligned. If the result is positive, a 1 is entered 

as the quotient digit corresponding to the rightmost digit of the dividend from which a digit 

of the divisor was subtracted. The next rightmost digit of the dividend is appended to the 

result, which then becomes the next partial dividend. The divisor is then shifted one place 

to the right so that its least significant digit is aligned with the rightmost digit of the partial 

dividend, and the process just described is repeated.  

If the result of subtracting the divisor from the dividend is negative, a 0 is entered in 

the quotient and the divisor is added back to the negative result so as to restore the original 
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dividend. The divisor is then shifted one place to the right, and a subtraction is carried out 

again. The process of restoring division is illustrated in the following example at the top of 

the next page:  

     

  

 Divisor = 1 1 1 1  Dividend = 1 1 0 0  

q0     q  q   q   q  q  

0 .1  1  0  0  1  

1 1 1 1 \r( 1 1 0 0 .0  0  0  0 

 0)  

Subtract  

Negative result  

    
q0 = 0  

 1 1 1 1  

0  0  1  1  

 

Restore       +1 1 1 1   

       1 1 0 0 0     

Subtract        1 1 1 1     

Positive result   q  = 1    1 0 0 1 0    

Subtract          1 1 1 1    

Positive result   q= 1    0 0 0 1 1 0   

Subtract  

Negative result  

Restore  

  

q= 0  

      1 1 1 1    

  1 0 0 1  

+  1 1 1 1  

 

      0 1 1 0 0    

Subtract  

Negative result  

Restore  

  

q= 0  

     1 1 1 1   

  0 0 1 1  

 +  1 1 1 1  

 

      1 1 0 0 0   

Subtract          1 1 1 1    

Positive result   q= 1   1 0 0 1  (remainder)  

  

In nonrestoring division, the step of adding the divisor to a negative partial dividend 

is omitted, and instead the shifted divisor is added to the negative partial divi- dend. This 

step of adding the shifted divisor replaces the two steps of adding the divi- sor and then 

subtracting the shifted divisor. This can be justified as follows: If X rep- resents the negative 

partial dividend and Y the divisor, then 1/2Y   represents the divi- sor shifted one place to 

the right. Adding the divisor and then subtracting the shifted divisor yields X + Y 1/2Y = 

X + 1/2Y , while adding the shifted divisor yields the same result, X + 1/2Y . The steps 

which occur in using nonrestoring division to divide 1100 by 1111 are shown in the 

following example at the top of the next page:  
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  1.2 Binary Arithmetic  

  

  

  

Divisor = 1 1 1 1  Dividend = 1 1 0 0  

q0     q  q  qqq   

 

  0  .1  1  0  0  1   

  1 1 1 1 \r( 1 1 0 0  .0  0  0  0  0)   

Subtract  1 1 1 1     

Negative result  q0  = 0  0 0 1 1 0     

Shift and add   +  1 1 1 1     

Positive result  q  = 1  + 1 0 0 1 0     

Shift and subtract      1 1 1 1     

Positive result  q= 1  + 0  0  1  1  0     

Shift and subtract     1 1 1 1     

Negative result  q= 0                   

Shift and add      1 1 1 1      

Negative result  q= 0  0 0 1 1 0    

 Shift and add    +  1 1 1 1   

 Positive result  q= 1  +  1 0 0 1  (remainder)  

  

An important technique for improving the performance of digital arithmetic cir- 

cuitry is the use of more sophisticated algorithms for the basic arithmetic operations. A 

discussion of these methods is beyond the scope of this book. The interested reader is  

referred to [Waser 82], [Hwang 78], or Chapter 2 and Section 8.1 in [Gschwind 75] for 

more details on arithmetic.  

  

  

   BINARY CODES  
  

The binary number system has many advantages and is widely used in digital systems. 

However, there are times when binary numbers are not appropriate. Since we think much 

more readily in terms of decimal numbers than binary numbers, facilities are usually 

provided so that data can be entered into the system in decimal form, the con- version to 

binary being performed automatically inside the system. In fact, many com- puters have 

been designed which work entirely with decimal numbers. For this to be possible, a scheme 

for representing each of the 10 decimal digits as a sequence of bi- nary digits must be used.  

  

1.3-1 Binary-Coded-Decimal Numbers  

  
To represent 10 decimal digits, it is necessary to use at least 4 binary digits, since 

there are 24 , or 16, different combinations of 4 binary digits but only 23, or 8, different 

combinations of 3 binary digits. If 4 binary digits,  or bits,  are used and only one 

combination of bits is used to represent each decimal digit, there will be six unused or 
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invalid code words. In general, any arbitrary assignment of combinations of bits to digits 

can be used so that there are 16!/6! or approximately 2.9   1010
  

  
  

  

  

  
TABLE 1.3-1  Some common 4-bit decimal codes  

  

Decimal 

digit  
8 b3  4 

b2  
2 b1  1 

b0  
8  4  -2  -1  2  4  2  1   Excess-3   

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  
1  0  0  0  1  0  1  1  1  0  0  0  1  0  1  0  0  
2  0  0  1  0  0  1  1  0  0  0  1  0  0  1  0  1  

3  0  0  1  1  0  1  0  1  0  0  1  1  0  1  1  0  
4  0  1  0  0  0  1  0  0  0  1  0  0  0  1  1  1  
5  0  1  0  1  1  0  1  1  1  0  1  1  1  0  0  0  

6  0  1  1  0  1  0  1  0  1  1  0  0  1  0  0  1  
7  0  1  1  1  1  0  0  1  1  1  0  1  1  0  1  0  

8  1  0  0  0  1  0  0  0  1  1  1  0  1  0  1  1  
9  1  0  0  1  1  1  1  1  1  1  1  1  1  1  0  0  

  
possible codes. Only a few of these codes have ever been used in any system, since the 

arithmetic operations are very difficult in almost all of the possible codes.    Several of the 

more common 4-bit decimal codes are shown in Table 1.3-1.  

The 8,4,2,1 code is obtained by taking the first 10 binary numbers and assigning them 

to the corresponding decimal digits. This code is an example of a weighted code, since the 

decimal digits can be determined from the binary digits by forming the sum d = 8b3 + 4b2 

+ 2b1 + b0 . The coefficients 8, 4, 2, 1 are known as the code weights. The number 462 

would be represented as 0100 0110 0010 in the 8,4,2,1 code. It has been shown in [White 

53] that there are only 17 different sets of weights possible for a  positively  weighted  code:  

(3,3,3,1),  (4,2,2,1),  (4,3,1,1),  (5,2,1,1), (4,3,2,1),  (4,4,2,1),  (5,2,2,1),  (5,3,1,1),  (5,3,2,1),  

(5,4,2,1),  (6,2,2,1),  (6,3,1,1), (6,3,2,1), (6,4,2,1), (7,3,2,1),   (7,4,2,1),   (8,4,2,1).  

It is also possible to have a weighted code in which some of the weights are nega- 

tive, as in the 8,4,2,1 code shown in Table 1.3-1.   This code has the useful property of 

being self-complementing: if a code word is formed by complementing each bit 

individually (changing 1's to 0's and 0's to 1's), then this new code word represents the 9's 

complement of the digit to which the original code word corresponds. For example, 0101 ' 

represents denotes the 3 in complement of the 8,4,2,1  code,bi , then a and  1010code is 

represents self-complementing if, 6 in this code.   

 In general, if bi  ' '   '   '  

for any code word b3b2b1b0 representing a digit di , the code word 
b

3
b

2
b

1
b

0 represents 9 di.   

The 2,4,2,1 code of Table 1.3-1 is an example of a self-complementing code having all 

positive weights, and the excess-3 code is an example of a code which is self- 

complementing but not weighted. The excess-3 code is obtained from the 8,4,2,1 code by 

adding (using binary arithmetic) 0011 (or 3) to each 8,4,2,1 code word to obtain the 

corresponding excess-3 code word.  

Although 4 bits are sufficient for representing the decimal digits, it is sometimes 

expedient to use more than 4 bits in order to achieve arithmetic simplicity or ease in er- ror 

detection. The 2-out-of-5 code shown in Table 1.3-2 has the property that each code word 

has exactly two 1's.   A single error which complements 1 of the bits will  
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 1.3 Binary Codes  

  
TABLE  1.3-2 Some decimal codes using more than 4 bits.  

  

Decimal 

digit  

  

2-out-of-5  
Biquinary 

5043210  

0  00011  0100001  

1  00101  0100010  
2  00110  0100100  
3  01001  0101000  
4  01010  0110000  
5  01100  1000001  
6  10001  1000010  
7  10010  1000100  
8  10100  1001000  
9  11000  1010000  

  

always produce an invalid code word and is therefore easily detected. This is an un- 

weighted code. The biquinary code shown in Table 1.3-2 is a weighted code in which 2 of 

the bits specify whether the digit is in the range 0 to 4 or the range 5 to 9 and the other 5 

bits identify where in the range the digit occurs.  

  
   GEOMETRIC REPRESENTATION OF BINARY NUMBERS  
  

An n-bit binary number can be represented by what is called a point in n- space. To 

see just what is meant by this, consider the set of 1-bit binary numbers, that is, 0 and 1. 

This set can be represented by two points in 1-space, i.e., by two points on a line. Such a 

presentation is called a 1-cube and is shown in Fig.1.4-1b.  

(A 0-cube is a single point in 0-space.)  

Now consider the set of 2-bit binary numbers, that is, 00, 01, 10, 11 (or, deci- mally, 

0, 1, 2, 3). This set can be represented by four points (also called vertices, or nodes) in 2-

space. This representation is called a 2-cube and is shown in Fig.1.4-1c. Note that this 

figure can be obtained by projecting the 1-cube (i.e., the horizontal line with two points) 

downward and by prefixing a 0 to 0 and 1 on the original 1-cube and a 1 to 0 and 1 on the 

projected 1-cube. A similar projection procedure can be followed in obtaining any next-

higher-dimensional figure. For example, the representation for the  

  

  
  

  

  
  

   
Figure  1.4-1   n-Cubes for n = 0, 1, 2, 3: (a) 

0-cube; (b) 1-cube; (c) 2- cube; (d) 3-cube.  
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set of 3-bit binary numbers is obtained by projecting the 2-cube representation of Fig.1.4-

1c. A 0 is prefixed to the bits on the original 2-cube, and a 1 is prefixed to the bits on the 

projection of the 2-cube. Thus, the 3-bit representation, or 3-cube, is shown in Fig. 1.4-1d.  

A more formal statement for the projection method of defining an n-cube is as 

follows:  

  

1. A 0-cube is a single point with no designation.  

2. An n-cube is formed by projecting an (n )-cube.   A 0 is prefixed to the desig- 

nations of the points of the original (n )-cube, and a 1 is prefixed to the desig- 

nations of the points of the projected (n )-cube.  

There are 2n points in an n-cube. A p-subcube of an n-cube. (p < n) is de- fined as a 

collection of any 2p  
 points which have exactly (n p) corresponding bits all the same.   For 

example, the points 100, 101, 000, and 001 in the 3-cube (Fig.1.4-1d) form a 2-subcube, 

since there are 22 = 4 total points and 3 2 = 1 of the bits (the sec-  

ondp-subcubes) is the sam in ane fo n-rcube all fou, sincr pointse ther.e    arIne  general,(Cn    

) = there (n!/( aren   p( )!n!2p!)n
  (pnumber ) /[(n p of)!p ways!] different of se-   

np  

lecting n things taken n p at a time) ways in which n p of the bits may be the same, and 

there are 2n p  
 combinations which these bits may take on. For example, there are (3!22 

)/(2!1!) = 12 1-subcubes (line segments) in a 3-cube, and there are (3!21 )/(1!2!) = 6 2-

subcubes ("squares") in a 3-cube.  

Besides the form shown in Fig.1.4-1, there are two other methods of drawing an n-

cube which are frequently used. The first of these is shown in Fig.1.4-2 for the 3- and 4-

cubes. It is seen that these still agree with the projection scheme and are merely a particular 

way of drawing the cubes. The lines which are dotted are usually omitted for convenience 

in drawing.  

If in the representation of Fig.1.4-2 we replace each dot by a square area, we have 

what is known as an n-cube map. This representation is shown for the 3- and 4- cubes in 

Fig. 1.4-3. Maps will be of considerable use to us later. Notice that the appropriate entry 

for each cell of the maps of Fig.1.4-3 can be determined from the corresponding row and 

column labels.  

It is sometimes convenient to represent the points of an n-cube by the decimal 

equivalents of their binary designations. For example, Fig.1.4-4 shows the 3- and 4- cube 

maps represented this way. It is of interest to note that, if a point has the decimal equivalent 

Ni in an n-cube, in an (n + 1)-cube this point and its projection (as defined) become Ni and 

Ni + 2n
 .  

  
  



 

 

  
  
  

Figure 1.4-2    Alternative representa- tions: (a) 

3-cube; (b) 4-cube.  

  

  

  

  

  

  

  

  

  

  

  

  

Figure 1.4-3 n-Cube maps for n = 3 (a) and n = 4 

(b).  

  
1.4-1 Distance  

  
A concept which will be of later use is that of the distance between two points on an n- 

cube. Briefly, the distance between two points on an n-cube is simply the number of 

coordinates (bit positions) in which the binary representations of the two points differ. This 

is also called the Hamming distance.    For example,   10110 and 01101 differ in all but 

the third coordinate (from left or right). Since the points differ in four coordi- nates, the 

distance between them is 4. A more formal definition is as follows: First, define the mod 2 

sum of two bits, a   b, by  

 0   0 = 0  1   0 = 1  

 0   1 = 1  1   1 = 0  

That is, the sum is 0 if the 2 bits are alike, and it is 1 if the 2 bits are different. Now consider 

the binary representations of two points,   Pi    =   (an-   an2 …a 0) ) and   Pj  = (bn1 bn2 

…b0)), on the n-cube.   The mod 2 sum of these two points is defined as  

Pk = Pi    Pj  =  (an     bn1  , an2     bn2 ,  … a0     b0)  

This sum Pk is the binary representation of another point on the n-cube. The number of 1's 

in the binary representation Pi is defined as the weight of Pi and is given the sym- bol |Pi 

|. Then the distance (or metric) between two points is defined as  

D(Pi , Pj ) = | Pi   Pj |  

The distance function satisfies the following three properties:  

 D(Pi , Pj )  =     0  if and only if Pi = Pj  

D(Pi , Pj  ) =  D(Pj , Pi ,  ) > 0 if Pi   =/  Pj D(Pi , Pj ) + D(Pj , Pk ) >   

D(Pi , Pk ) Triangle inequality  
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Figure 1.4-4 Decimal labels in n-cube maps: (a) 

3-cube map; (b) 4-cube map.  
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To return to the more intuitive approach, since two adjacent points (connected by a 

single line segment) on an n-cube form a 1-subcube, they differ in exactly one coordi- nate 

and thus are distance 1 apart. We see then that, to any two points which are dis- tance D 

apart, there corresponds a path of D connected line segments on the n-cube joining the two 

points. Furthermore, there will be more than one path of length D con- necting the two 

points (for D > 1 and n > 2), but there will be no path shorter than length D connecting the 

two points. A given shortest path connecting the two points, thus, cannot intersect itself, 

and D + 1 nodes (including the end points) will occur on the path.  

  

1.4-2 Unit-distance Codes  

  

In terms of the geometric picture, a code is simply the association of the decimal inte- gers 

(0,1,2,...) with the points on an n-cube. There are two types of codes which are best 

described in terms of their geometric properties. These are the so-called unit- distance 

codes and error-detecting and error-correcting codes.  

A unit-distance code is simply the association of the decimal integers (0,1,2,...) with 

the points on a connected path in the n-cube such that the distance is 1 between the point 

corresponding to any integer i and the point corresponding to integer i + 1 (see Fig. 1.4-5). 

That is, if Pi is the binary-code word for decimal integer i, then we must have  

 D(Pi , Pi + 1) = 1  i = 0, 1, 2, …  

Unit-distance codes are used in devices for converting analog or continuous sig- nals 

such as voltages or shaft rotations into binary numbers which represent the magni- tude of 

the signal.  Such a device is called an analog-digital   converter.   In any such device there 

must be boundaries between successive digits, and it is always possible for there to be some 

misalignment among the different bit positions at such a boundary. For example, if the 

seventh position is represented by 0111 and the eighth position by 1000, misalignment 



 

 

could cause signals corresponding to 1111 to be gen- erated at the boundary between 7 and 

8.   If binary numbers were used for such a de- vice, large errors could thus occur. By using 

a unit-distance code in which adjacent positions differ only in 1 bit, the error due to 

misalignment can be eliminated.  

The highest integer to be encoded may or may not be required to be distance 1 from 

the code word for 0. If it is distance 1, then the path is closed. Of particular interest is the 

case of a closed nonintersecting path which goes through all 2n points of the n-cube. In 

graph theory such a path is known as a (closed) Hamilton line. Any unitdistance code 

associated with such a path is sometimes called a Gray code, although this term is usually 

reserved for a particular one of these codes. To avoid  

  

  

  

  

  
Figure 1.4-5 Path on a 3-cube 

corresponding to a unit-distance code.  

  

  
TABLE 1.4-1 Unit-dis- tance 

code of Fig. 1.4-5  

  

0  000  
1  001  

2  011  
3  010  
4  110  

5  111  
6  101  

7  100  

  

  

confusing terminology, we shall refer to a unit-distance code which corresponds to a closed 

Hamilton line as a closed n code. This is a unit-distance code containing 2n code words in 

which the code word for the largest integer (2n
   1) is distance 1 from the code word for 

the least integer (0). An open n code  is similar except that the code words for the least and 

largest integer, respectively, are not distance 1 apart.  

The most useful unit distance code is the Gray code which is shown in Table 1.4- 2. 

The attractive feature of this code is the simplicity of the algorithm for translating from the 

binary number system into the Gray code. This algorithm is described by the expression  

 gi = bi    bi  + 1  

  
  

TABLE 1.4-2 The Gray code  

  

  

  

Decimal  

   
Binary  

    
Gray  

 

b3  b2  b1  b0  g3  
 

g2 g1  g0  

0  0  0  0  0  0   0  0  0  

1  0  0  0  1  0   0  0  1  
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2  0  0  1  0  0   0  1  1  

3  0  0  1  1  0   0  1  0  

4  0  1  0  0  0   1  1  0  

5  0  1  0  1  0   1  1  1  

6  0  1  1  0  0   1  0  1  

7  0  1  1  1  0   1  0  0  

8  1  0  0  0  1   1  0  0  

9  1  0  0  1  1   1  0  1  

10  1  0  1  0  1   1  1  1  

11  1  0  1  1  1   1  1  0  

12  1  1  0  0  1   0  1  0  

13  1  1  0  1  1   0  1  1  

14  1  1  1  0  1   0  0  1  

15  1  1  1  1  1   0  0  0  
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Thus, the Gray code word corresponding to 1100 in binary is formed as follows: g0 

= b0   b1 = 0   0 = 0 g1 = b1   b2 = 0   1 = 1 g2 = b2   b3 = 1   

1 = 0  

 g3 = b3   b4 = b3 = 1  b4 understood to be 0  

  
1.4-3 Symmetries of the n-Cube  

  
A symmetry of the n-cube is defined to be any one-to-one translation of the binary point 

representations on the n-cube which leaves all pairwise distances the same. If we consider 

the set of binary numbers, we see that there are only two basic translation schemes which 

leave pairwise distances the same. (1) The bits of one coordinate may be interchanged with 

the bits of another coordinate in all code words. (2) The bits of one coordinate may be 

complemented (i.e., change 1's to 0's and 0's to 1's) in all code words. Since there are n! 

translation schemes possible using (1), and since there are 2n ways in which coordinates 

may be complemented, there are 2n translation schemes possible using (2). Thus, in all 

there are 2n(n!) symmetries of the n-cube. This means that for any n-bit code there are 2 n 

(n!)     1 rather trivial modifications of the original code (in fact, some of these may result 

in the original code) which can be obtained by interchanging and complementing 

coordinates.   The pairwise distances are the same in all these codes.  



 

 

It is sometimes desired to ennumerate the different types of a class of codes. Two codes are 

said to be of the same type if a symmetry of the n-cube translates one code into the other 

(i.e., by interchanging and complementing coordinates). As an example, we might ask: 

What are the types of closed n codes? It turns out that for n < 4 there is just one type, and 

this is the type of the conventional Gray code. For n = 4, there are nine types. Rather than 

specify a particular code of each type, we can list these types by specifying the sequence 

of coordinate changes for a closed path of that type. On the as- sumption that the 

coordinates are numbered (3210), the nine types are shown in Table 1.4-3.  

  
TABLE 1.4-3 Nine different types of unit-distance 4-bit code  

 

Type  

  

1 (Gray)  0  1  0  2  0  1  0  3  0  1  0  2  0  1  0  3  
2  1  0  1  3  1  0  1  2  0  1  0  3  0  1  0  2  

3  1  0  1  3  0  1  0  2  1  0  1  3  0  1  0  2  
4  1  0  1  3  2  3  1  0  1  3  1  0  2  0  1  3  
5  1  0  1  3  2  0  1  3  1  0  1  3  2  0  1  3  

6  1  0  1  3  2  3  1  3  2  0  1  2  1  3  1  2  
7  1  0  1  3  2  0  2  1  0  2  0  3  0  1  0  2  
8  1  0  1  3  2  1  2  0  1  2  1  3  0  1  0  2  

9  1  0  1  3  2  3  1  0  3  0  2  0  1  2  3  2  

  

  
   ERROR-DETECTING AND ERROR-CORRECTING CODES  
  

Special features are included in many digital systems for the purpose of increasing system 

reliability. In some cases circuits are included which indicate when an error has occurred—

error detection—and perhaps provide some information as to where the error is—error 

diagnosis. Sometimes it is more appropriate to provide error correction: circuits not only 

detect a malfunction but act to automatically correct the erroneous indications caused by 

it. One technique used to improve reliability is to build two duplicate systems and then to 

run them in parallel, continually comparing the outputs of the two systems, [Burks 62]. 

When a mismatch is detected, actions are initiated to determine the source of the error and 

to correct it, [Keister 64]. Another approach uses three copies of each system module and 

relies on voter elements to select the correct output in case one of the three copies has a 

different output from the other two, ([von Neumann 56], [Lyons 62]). This technique is 

called triple modular redundancy (TMR). Such costly designs are appropriate either when 

the components are not sufficiently reliable [Burks 62] or in systems where reliability is 

very important as in real-time applications such as telephony, [Keister 64], airline 

reservations,  [Perry 61], or space vehicles, [Dickinson 64].  

In many other applications where such massive redundancy is not justified it is still 

important to introduce some (less costly) techniques to obtain some improvement in 

reliability. A very basic and common practice is to introduce some redundancy in encoding 

the information manipulated in the system. For example, when the 2-out-of- 5 code is used 

to represent the decimal digits, any error in only one bit is easily detected since if any single 

bit is changed the resulting binary word no longer contains exactly two 1's. While it is true 

that there are many 2-bit errors which will not be detected by this code, it is possible to 

argue that in many situations multiple errors are so much less likely than single errors that 

it is reasonable to ignore all but single errors.  

Suppose it is assumed that the probability of any single bit being in error is p and 

that this probability is independent of the condition of any other bits. Also suppose that p 

is very much less than one, (i.e., that the components are very reliable). Then the 
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probability  of  all  5  bits  representing  one  digit  being  correct  is  P0   =  (1p)5,   the 

probability of exactly one error is P1 = 5(1p)4p and the probabilty of two errors is P2 = 

10(1p)3p2  .    Taking the ratio P2/P1= 2p/(1p)      2p/(1+p)  <<  1,  showing  that  the 

probabilty of a double error is much smaller than that of a single error. Arguments such as 

this are the basis for the very common emphasis on handling only single errors.  

It is possible to easily convert any of the 4-bit decimal codes to  single-error- 

detecting codes by the addition of a single bit a parity bit as is illustrated for the 8421 code 

in Table 1.5-1. The parity bit p is added to each code word so as to make the total number 

of 1's in the resultant 5-bit word even; i.e., p = b0   b1   b2   b3 If any one bit is reversed 

it will change the overall parity (number of 1's) from even to odd and thus provide an error 

indication.  

This technique of adding a parity bit to a set of binary words is not peculiar to binary-

coded-decimal schemes but is generally applicable. It is common practice to add a parity 

bit to all information recorded on magnetic tapes.  
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  TABLE 1.5-1  8421 code with parity bit added  

 

Decimal 8 4 2 1 Parity, digit b3 b2 b1 b0 p  

  

0  0  0  0  0  0  
1  0  0  0  1  1  
2  0  0  1  0  1  
3  0  0  1  1  0  
4  0  1  0  0  1  
5  0  1  0  1  0  
6  0  1  1  0  0  
7  0  1  1  1  1  
8  1  0  0  0  1  
9  1  0  0  1  0  

  

  

The 8421 code with a parity bit added is shown plotted on the 5-cube map of Fig.1.5-

1. Inspection of this figure shows that the minimum distance between any two words is two 

as must be true for any single-error-detecting code.  

In summary, any single-error-detecting code must have a minimum distance between 

any two code words of at least two, and any set of binary words with minimum distance 

between words of at least two can be used as a single-error-detecting code. Also the 

addition of a parity bit to any set of binary words will guarantee that the minimum distance 

between any two words is at least two.  

  

  

  

  

  

  

  
 
Figure 1.5-1 Five-cube map for  the 8421 BCD code 

with parity bit p  

  
  

1.5-1 Single-Error-Correcting Codes  

  

A parity check over all the bits of a binary word provides an indication if one of the bits is 

reversed; however, it provides no information about which bit was changed  all bits enter 

into the parity check in the same manner. If it is desired to use parity checks to not only 

detect an altered bit but also to identify the altered bit, it is necessary to resort to several 

parity checks  each checking a different set of bits in the word. For example, consider the 

situation in Table 1.5-2 in which there are three bits, M1, M2, and M3, which are to be used 

to represent eight items of information and there are two parity check bits C1   and C2.    The 

information bits, Mi, are often called message     bits and the Ci bits check bits. As indicated 

in the table C1 is obtained as a parity check over  
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  TABLE 1.5-2 A parity check table  
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M1  M2  M3  C1  C2  

   

  

  

  

   

  

C1 = M1   M3, C2 = M2   M3  

 
   

bits M1 and M3, while C2 checks bits M2 and M3.  

At first glance it might seem that this scheme might result in a single-error-correct- 

ing code since an error in M3 alters both parity checks while an error in M1 or M2 each alters 

a distinct single parity check. This reasoning overlooks the fact that it is possible to have 

an error in a check bit as well as an error in a message bit.   Parity check one could fail as 

a result of an error either in message bit M1 or in check bit C1.     Thus in this situation it 

would not be clear whether M1 should be changed or not. In order to obtain a true single-

error-correcting code it is necessary to add an additional check bit as in Table 1.5-3.  

  

TABLE 1.5-3 Eight-word single-error-correcting code: (a) Parity check table; (b) 

parity check equations; (c) Single-error-correcting code  

  

 

         (a)       (b)  

            

C1 = M1   M3  

C2 = M2   M3  

C3 = M1   M2  

       (c)  

       

` M1 M2 M3  C1 C2 C3  a 0 0 0  0 0 0  b 0 0 1  1 1 0  c 

0 1 0  0 1 1  d 0 1 1  1 0 1  e 1 0 0  1 0 1  f 1 0 1  0 1 

1   
g 1 1 0  1 1 0  h 1 1 1  0 0 0   

 
  

  

Inspection of the parity check table in Table 1.5-3a shows that an error in any one of 

the check bits will cause exactly one parity check violation while an error in any one of the 

message bits will cause violations of a distinct pair of parity checks. Thus it is possible to 

uniquely identify any single error. The code words of Table 1.5-3c are shown plotted on 

the 6-cube map of Fig. 1.5-2. Each code word is indicated by the cor-  
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M1  M2  M3  C1  C2  C3  

   
  

  

  

  

   
  

  

 

      

   
     



 

 

  

  
responding letter and all cells distance 1 away from a code word are marked with an  . The 

fact that no cell has more than one   shows that no cell is distance one away from two code 

words. Since a single error changes a code word into a new word distance one away and 

each of such words is distance one away from only one code word it is possible to correct 

all single errors. A necessary consequence of the fact that no word is distance one away 

from more than one code word is the fact that the minimum distance between any pair of 

code words is three. In fact the necessary and sufficient conditions for any set of binary 

words to be a single-error-correcting code is that the minimum distance between any pair 

of words be three.  

A single error correcting code can be obtained by any procedure which results in a 

set of words which are minimum distance three apart. The procedure illustrated in Table 

1.5-3 is due to [Hamming 50] and due to its systematic nature is almost univer- sally used 

for single-error-codes.  

With three parity check bits it is possible to obtain a single-error-correcting code of 

more than eight code words. In fact up to sixteen code words can be obtained. The parity 

check table for a code with three check bits, C1, C2, and C4, and four message bits M3 , M5, 

M6 and M7 is shown in Table 1.5-4. The peculiar numbering of the bits has been adopted to 

demonstrate the fact that it is possible to make a correspondence between the bit positions 

and the entries of the parity check table. If the blanks in the table are replaced by 0's and 

the  's by 1's then each column will be a binary number which is the equivalent of the 

subscript on the corresponding code bit. The check bits are placed in the bit positions 

corresponding to binary powers since they then enter into only one parity check making 

the formation of the parity check equations very straight- forward.  

The fact that Table 1.5-4 leads to a single-error-correcting code follows from the fact 

that each code bit enters into a unique set of parity checks.   In fact, the necessary and 

sufficient conditions for a parity check table to correspond to a single-error-correct- ing 

code are that each column of the table be distinct (no repeated columns) and that  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Figure 1.5-2 Six-cube map for the code of 

Table 1.5-3c.  

  

 Sec. 1.5 Error-Detecting and Error-Correcting Codes  
TABLE 1.5-4  Parity check table for a single-error-correcting code 

with 3 check bits and 4 message bits  
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C1  C2  M3  C4  M5  M6  M7  

 

   
  

    
    

  

  

  

  

              

C1 = M3   M5    M7   

C2 = M3   M6,     M7  

C4 = M5   M6,     M7  

 
   

each column contain at least one entry. It follows from this that with K check bits it is 

possible to obtain a single-error-correcting code having at most 2K
   total bits.1 There are 

2K
 different columns possible but the empty column must be excluded leaving 2K

  

 columns.  

  

1.5-2 Double-Error-Detecting Codes  

  
If a code such as that generated by Table 1.5-4 is being used and a double error occurs, a 

correction will be carried out but the wrong code word will be produced. For exam- ple, 

suppose that bits C1 and C2 were in error, the first two parity checks would be vio- lated 

and it would appear as if message bit M3 had been in error. Similarly, errors in bit M3 and 

M6 would result in violations of the first and third parity checks,2 and an indication of M5 

being in error would be produced. It is possible to add the ability to detect double errors 

as well as correct single errors by means of one addition parity check over all the bits.   This 

is illustrated in Table 1.5-5. Any single error in the resulting code will result in the same 

parity check violations as without P and in addition will violate the P parity check. Any 

double error will not violate the P parity check but will violate some of the C parity checks 

thus providing an indication of the double error.  

A code that detects double errors as well as correcting single errors must consist of 

binary words having a minimum distance of four. This situation is illustrated by Fig.1.5-3. 

Both the single-error codes and the double-error-detecting codes are in use in contemporary 

systems [Hsiao 70]. Many more sophisticated error-correcting codes have been studied ( 

[Peterson 72], [Berlekamp 68] ).  

  

  
  

  

  
  

  
1 

In Table 1.5-4, K=3, 2K 1=7  and the table does indeed have a total of 7 bits. 
2 

The 

two changes in parity check two would cancel.  
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TABLE 1.5-5 Parity check table for a code to detect all double errors and 

correct all single errors  

  

 

 C1  C2  M3  C4  M5  M6  M7  P  

      
  

 

  
    

   

  

  

  

   

   

    

    

    

  

  

  

  

  

  

  

  

  

 C1  =M3    M5 M7  

 C2  =M3 M6,  M7  

 C4  =M5 M6,  M7  

P =C1  C2   M3      C4   M5     M6   M7  

 
  

  

  

  

  

  
Figure 1.5-3 Fragment of an N-cube illustrating the 

distance between code words in a double-error-detecting, 

single- error-correcting code.  
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PROBLEMS  

  

   Convert:    
(a) (523.1)10 to base 8  (e)  (1100.11)2 to base 7  

(b) (523.1)10 to base 2 (f) (101.11)2 to base 4 (c)  (101.11)2 to base 8 (g)  (321.40)6 

to base 7  

 (d)  (101.11)2 to base 10  (h) (25/3) 10 to base 2  

  

 In base 10 the highest number which can be obtained by multiplying together two single digits 

is 9   9 = 81, which can be expressed with two digits. What is the maximum number of digits 

required to express the product of two single digits in an arbitrary base-b system?  

   Given that (79)10 = (142)b , determine the value of b.  

 Given that (301)b = (I2)b , where I is an integer in base b and I2 is its square, determine the value 

of b.  

   Let  

N*   =  (n4 n3n2n1n0)*  = 2 3 4  5  n4  + 3 4  5  n3  + 4 5  n2  + 5 n1 + n0  

= 120n4 + 60n3 + 20n2 + 5n1 + n0 where  

0 < n0   < 4   0 < n1 < 3   0 < n2 < 2   0 < n3 < 1 0   <   n4 < 1 with all the ni positive 

integers.  

(a) Convert (11111)* to base 10.  

(b) Convert (11234)* to base 10.  

(c) Convert (97)10 to its equivalent (n4 n3n2n1n0)* .  

(d) Which decimal numbers can be expressed in the form (n4 n3n2n1n0 )* ?  
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 In order to write a number in base 16 the following symbols will be used for the numbers 

from 10 to 15:  
 10 t  12 w  14 u  

(a) Convert  11 e  13 h  15 f  (4tu)16  to base 10.  

(b) Convert (2tfu)16 to base 2 directly (without first converting to base 10).  

 Convert (1222)3 to base 5, (N)5 , using only binary arithmetic:  

(a) Convert (1222)3 to (N)2 . (b) Convert ( N)2 to (N)5 .  

 Perform the following binary-arithmetic operations: (a)  11.10 

+ 10.11 + 111.00 + 110.11 + 001.01 = ?  

(b) 111.00  011.11 = ?  

(c) 011.11 111.00 = ?  

(d) 111.001  1001.1 = ?  

(e) 101011.1 + 1101.11 = ?  

 Form the radix complement and the diminished radix complement for each of the 

following numbers: (a)  (.10111)2  

(b) (.110011)2  

(c) (0.5231)10  

(d) (0.32499)10  

(e) (0.3214)6  

(f) (032456)7  

    

(a) Write out the following weighted decimal codes:  

(i) 7, 4, 2,   1  

(ii) 8, 4,  2,  1  

(iii) 4, 4, 1,  2  

(iv) 7, 5, 3,  6  

(v) 8, 7,  4,  2  

(b) Which codes of part (a) are self-complementing?  

(c) If a weighted binary-coded-decimal code is self-complementing, what necessary 

condition is placed on the sum of the weights?  

(d) Is the condition of part (c) sufficient to guarantee the self-complementing property? 

Give an example to justify your answer.  

  Write out the following weighted decimal codes:  (7, 3, 1,  2), (8, 4,  3 ,  2), (6, 2, 

2, 1). Which of these, if any, are self-complementing?  

   Sketch a 4-cube, and label the points. List the points in the p-subcubes for p=2,3.  

 Compute all the pairwise distances for the points in a 3-cube. Arrange these in a matrix form 

where the rows and columns are numbered 0,1,...,7, corresponding to the points of the 3-

cube. The 0-, 1-, and 2-cube pairwise distances are given by submatrices of this matrix.   

By observing the relationship between these matrices, what is a scheme for going from 

the n-cube pairwise-distance matrix to the (n+1)- cube pairwise-distance matrix?  

 What is a scheme for going from the Gray code to the ordinary binary code using addition mod 

2 only?  

 For the Gray code, a weighting scheme exists in which the weights associated with the bits are 

constant except for sign.The signs alternate with the occurrence of 1's,  
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left to right. What is the weighting scheme?  

   List the symmetries of the 2-cube.  

   Write out a typical type-6 closed-unit-distance 4 code (Table 1.4-3).  

 Write out two open unit-distance 4 codes of different type (i.e., one is not a symmetry of the other).  

   Write out a set of six code words which have and single-error-correcting property.  

 A closed error-detecting unit-distance code is defined as follows: There are k (k<2n
 ) ordered binary 

n-bit code words with the property that changing a single bit in any word will change the 

original word into either its predecessor or its successor in the list (the first word is considered 

the successor for the last word) or into some other n-bit word not in the code. Changing a 

single bit cannot transform a code word into any code word other than its predecessor or 

successor.      List the code word for such a code with k = 6, n = 3. Is there more than one 

symmetry type of code for these specifications? Why?  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 



 

 

  

  

  

  

  

  
 28  Number Systems and Codes        Chap. 1  

  



 

 

 CHAPTER 2 PREVIEW  
  

  

  

  

  

• Counting in Decimal  • Electronic  

 and Binary  Translators  

• Place Value  • Hexadecimal  

Numbers  

• Binary to Decimal  

 Conversion  • Octal Numbers  

• Decimal to Binary Conversion  

 



 

 

  

COUNTING IN  

DECIMAL AND BINARY  

• Number System -  

Code using symbols that refer to 

a number of items.  

  

• Decimal Number System - Uses ten 

symbols (base 10 system)  

  

• Binary System -  

Uses two symbols (base 2 system)  



 

 

PLACE VALUE  
  

• Numeric value of symbols in different positions.  

• Example - Place value in binary system:  

  

  

 Place Value  8s  4s  2s  1s  

  

  

 Binary  Yes  Yes  No  No  

 Number  1   1   0   0  

RESULT: Binary 1 00 = decimal 8 + 4 + 0 + 0 = decimal 12  



 

 

BINARY TO DECIMAL 

CONVERSION  
  

  

Convert Binary Number 110011 to 

a Decimal Number:  

  

  

  

Binary  

  

  

  

1  1  0  0  1  1  

 
         

  



 

 

 Decimal  32 + 16 + 0 + 0 + 2 + 1 =   

  

  

  

  

  

  

  

  

Convert the following binary 

numbers into decimal numbers:  

  

  

 Binary 1001 =  9  

 Binary 1 1  =  15  

51 



 

 

 Binary 0010 =  2  

DECIMAL TO BINARY  

CONVERSION  
  

  

Divide by 2 Process  



 

 

 Decimal # 13 ÷ 2 = 6 remainder 1  

  

  

  

6 ÷ 2 = 3 remainder 0  

  

3 ÷ 2 = 1 remainder 1  

  

1 ÷ 2 = 0 remainder 1  

  

  

  

1  1  0 1  

  

  

  

  

  

  

  

  

  



 

 

Convert the following decimal 

numbers into binary:  

 Decimal 1  =  101  

 Decimal 4  =  0100  

Decimal 17 = 10001  

ELECTRONIC 

TRANSLATORS  
  

  

  



 

 

Devices that convert from decimal to 

binary numbers and from binary to 

decimal numbers.  

  

  

  

Encoders - translates from decimal 

to binary  

Decoders - translates from binary to 

decimal  

ELECTRONIC ENCODER -  

DECIMAL TO BINARY  



 

 

Binary output Decimal input  

 

 

Decimal 

to  

Binary  

Encoder  

 

 

00  1010  

01  011   
 

 

  

  

  

• Encoders are available in IC form.  

• This encoder translates from decimal 

input to binary (BCD) output.  

5 
  

7 
  

0 
  

  

  

  

  

3 
  



 

 

ELECTRONIC DECODING: 

BINARY TO DECIMAL  
 Binary input  Decimal output  

0 01 0 1 10  

  

Binary-to- 7-

Segment Decoder/  

Driver  

  

  

  

  

• Electronic decoders are available in IC form.  

• This decoder translates from binary to decimal.  

• Decimals are shown on an 7-segment LED display.  



 

 

• This decoder also drives the 7-segment display.  

HEXADECIMAL NUMBER SYSTEM  
  

  

  

Uses 16 symbols -Base 16 System  

0-9, A, B, C, D, E, F  

  

 Decimal  Binary  Hexadecimal  

 1  0001  1  

9 1001  9  

10 1010  A  



 

 

15 1 1  F  

16 10000  10  

HEXADECIMAL AND  

BINARY CONVERSIONS  

• Hexadecimal to Binary Conversion  

 Hexadecimal  C  3  

 

 Binary  1100  0011  

• Binary to Hexadecimal Conversion  

 Binary  1 10  1010  



 

 

 

 Hexadecimal  E  A  

  DECIMAL TO HEXADECIMAL 

CONVERSION  
  

   

Divide by 16 Process   

  

  

  

  



 

 

  Decimal #  47 ÷ 16 = 2 remainder 15  

             

2 ÷ 16 = 0 remainder 2  

2  F  

  HEXADECIMAL TO DECIMAL 

CONVERSION  
  

  

Convert hexadecimal number  

2DB to a decimal number    

  

  

  

  

  



 

 

 Place Value 256s 16s 1s  

  

  

  

  

 Hexadecimal  2  D  B  

  

  (256 x 2)  (16 x 13)  (1 x 11)  

    

 Decimal  512  +  208  +  1  =   

 

 

TEST  

 

      

Convert Hexadecimal number A6 to Binary  

 A6 =  1010 0110 (Binary)  

  

731 



 

 

  

Convert Hexadecimal number 16 to Decimal  

 16 =
  

22 (Decimal)  

  

  

Convert Decimal 63 to Hexadecimal  

63 = 3F (Hexadecimal)  

OCTAL NUMBERS  
  

   

Uses 8 symbols -Base 8 System  

0, 1, 2, 3, 4, 5, 6, 7  

  

  



 

 

  
 
 

 Decimal  Binary  Octal  

 1  001  1  

6 1 0  6  

7 1 1  7  

8 001 000  10  

9 001 001  1  

PRACTICAL SUGGESTION ON 

NUMBER SYSTEM CONVERSIONS  

• Use a scientific calculator  

  



 

 

  

• Most scientific calculators have DEC, BIN, 

OCT, and HEX modes and can either convert 

between codes or perform arithmetic in 

different number systems.  

  

• Most scientific calculators also have other 

functions that are valuable in digital 

electronics such as AND, OR, NOT, XOR, and 

XNOR logic functions.  
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⚫ 
  AND   

⚫ 
  OR   

Basic 

  

Logic 

  

Operations 

  

  

⚫ 
  NOT 

  

( Complement )   

  
  

  

⚫ 
  Order 

  

of 

  

Precedence   

1. 

  

NOT 

  

2. 

  

AND 

  

3. 

  

OR 

  

  

  

can be 

  

modified 

  

using 

  

parenthesis 
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h 

  

Additional 

  

Logic 

  

Operations 

  

⚫ 
  NAND   

  

  

F 

  

= 

  

( A 

  

. 

  

B)' 

  

⚫ 
  NOR   

  

  

F 

  

= 

  

( A 

  

+ 

  

B)' 

  

⚫ 
  XOR   

  

  

Output 

  

is 

  

1 

  

iff 

  

either 

  

input 

  

is 

  

1 , 

  

but 

  

not 

  

both. 

⚫ 
  XNOR 

  

( aka. 

  

Equivalence)   

  

  

  

Output 

  

is 1 

  

iff 

  

bot 

  

are 

  

0. 

inputs 

  

are 

  

1 

  

or 

  

both 

  

inputs 
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c 

  

c 

  

Additional 

  

Logic 

  

Operations 

  

  

  

Exer 

  

  

Derive the Truth ta 

  

following 

  

logi 

  

  

  

ise: 

  

  

le 

  

for 

  

each 

  

of 

  

the 

  

operations: 

  

  
  

1. 

  

2 - input NAND 

  

2. 

  

2 - input NOR 
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Additional 
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Exer 

  

  

Derive the Truth ta 

  

following 

  

logi 

  

ise: 

  

  

le 

  

for 

  

each 

  

of 

  

the 

  

operations: 

  

  
  

1. 

  

2 - input 

  

XOR 

  

2. 

  

2 - input 

  

XNOR 
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Truth T ables  
⚫ Used to describe the functional behavior of a Boolean 

expression and/or Logic circuit.  

  

⚫ Each row in the truth table represents a 
unique  combination of the input variables.  

   For n input variables there are 2n rows.  

  

⚫ The output of the logic function is defined for each 
row.  
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⚫ Each row is assigned a numerical value, with the rows 
listed in ascending order.  

⚫ The order of the input variables defined in the logic 
function is important.  
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3 - 

  

input 

  

Truth 

  

Table 

  

  
  
  

  
  
  
  
  
  
  
  
  
  

  

  

F(A,B,C) 

  

= 

  

Boolean 

  

expression 
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4 - 

  

input 

  

Truth 

  

Table 

  

  

  

  

  

F(A,B,C,D) 

  

= 

  

Boolean 

  

expression 
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x 

  

  

  

  

  

  

Boolean 

  

E 

  

pressions 
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C 

  

  

  

B 

  

  

Boolean 

  

Expressions 

  

⚫ 
  Boolean 

  

expressions 

  

are composed 

  

of   

  

⚫   Literals 

  

– 

  

variables 

  

⚫   Logical 

  

operations 

  

⚫ 
  Examples   

⚫   F 

  

= 

  

A.B'.C 

  

+ 

  

A'.B. 

  

and their complements 

  

  

  

  

' 

  

+ 

  

A.B.C 

  

+ 

  

A'.B'.C' 

  

  
  
  

literals 
  

logic 
  operations 

  

  
  

⚫   F = 

  

+ ( A+B+C').(A' 

  

'+C).(A+B+C) 

  

  

⚫   F 

  

= 

  

A.B'.C' 

  

+ 

  

A.(B.C' 

  

+ 

  

B'.C) 
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m 

  

  

Boolean 

  

Expressions 

  

⚫ 
  Boolean 

  

expressions 

  

are 

  

realized 

  

using 

  

a 

  

network 

  

( or combination) of 

  

logic 

  

gates.   

  

  

  

Each logic 

  

gate 

  

i 

  

operations in 

  

the 

plements 

  

one 

  

of 

  

the logic 

  

Boolean 

  

expression 

  

  

  

  

Each 

  

input 

  

to 

  

a 

  

lo 

  

the 

  

literals 

  

in 

  

the 

A 
  

B 
  

literals 
  

ic 

  

gate 

  

represents 

  

one 

  

of 

  

oolean 

  

expression 

  

  

logic 
  operations 

  

  

f 
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 Boolean Expressions  

  

  ⚫ Boolean expressions are evaluated by  

 ⚫ Substituting a 0 or 1 for each literal  

 ⚫  Calculating the logical value of the expression  

  

⚫ A Truth Table specifies the value of the 
Boolean expression for every combination of 
the variables in the Boolean  expression.  

  

⚫ For an n-variable Boolean expression, the truth 
table has 2n rows (one for each combination).  
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x 

  

  

m 

  

C 

  

  

Boolean 

  

E 

  

  

Exa 

  

  

Evaluate 

  

the 

  

following 

  

for 

  

all 

  

combination 

  

of 

  

pressions 

  

  

ple: 

  

  

Boolean 

  

expression, 

  

inputs, 

  

using 

  

a 

  

Truth 

  

table. 

  

  
  

F(A,B,C) 

  

= 

  

A'.B'. 

  

+ 

  

A.B'.C' 

  

+ 

  

A.C 
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x 

  

o 

  

  

o 

  

  

Boolean 

  

E 

  

⚫ 
  Two 

  

Boolean 

  

expressi   

pressions 

  

ns 

  

are 

  

equivalent 

  

if 

  

they 

  

have 

  

the 

  

same 

  

value for 

  

each 

  

combination of 

  

the 

  

variables in 

  

the Bo 

  

  

  

F 1 

  

= 

  

( A 

  

+ 

  

B)' 

  

  

  

F 2 

  

= 

  

A'.B' 

  

⚫ 
  How 

  

do 

  

you 

  

prove that   

lean 

  

expression. 

  

  

  

two 

  

Boolean 

  

expressions 

  

are 

  

equivalent? 

  

  

  

Truth 

  

table 

  

  

  

Boolean Algebra 
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x 

  

m 

  

  

Boolean 

  

E 

  

  

Exa 

  

pressions 

  

  

ple: 

  

  
  

Using a Truth table, prove that the following 

  

two 

  

Boolean expressions 

  

are equivalent. 

  

  
  

F 1 

  

= 

  

( A 

  

+ 

  

B)' 

  

F 2 

  

= 

  

A'.B' 
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Boolean 

  

Algebra 
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Boolean Algebra  
⚫ George Boole developed an algebraic description for 

processes involving logical thought and reasoning.  

    Became known as Boolean Algebra  

⚫ Claude Shannon later dem  onstrated that Boolean 
Algebra could be used to  escribe switching circuits.  

  Switching circuits are  circuits built from devices that 

switch between two states (e.g. 0 and 1).  

  Switching Algebra is  a special case of Boolean 
Algebra in which all v ariables take on just two distinct 

values  
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⚫ Boolean Algebra is a powerful tool for analyzing and 
designing logic circuits.  
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o 

  

A 

  

  

C 

  

A 

  

Idemp 

  

A 

  

+ 

  

F = 

  

ABC 

  

+ 

  

F = 

  

AB 

  

Note: 
  
terms 

  
can 

  
also 

  
be 

  

tence 

  

= 

  

A 

  

ABC' 

  

+ 

  

ABC 

  

+  ABC' 
  

added 
  
using 

  
this 

  
theorem 

  

  
  
  
  

A 

  

. 

  

G 

  

= 

  

( A' 
  

+ 

  

B + 

  

C').(A 

  

= 

  

A 

  

+ 

  

B' 
  

+ 

  

C).(A + 

  

B' 
  

+ 

  

C) 

  

  

G 

  

= 

  

( A' 
  

+ 

  

B 

  

+ 

  

C') 

  

+ 

  

( A 

  

+ 

  

B' 
  

+ 

  

C) 

  

  

Note: 
  
terms 

  
can 

  
also 

  
be 

  
added 

  
using 

  
this 

  
theorem 
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A 

+ 

  

  

Complement 

  

  

A 

  

+ 

  

' 

  

= 

  

1 

  

  

F 

  

= 

  

ABC'D 

  

+  ABCD 

  

F = 

  

ABD.(C' 
  

+ 

  

C) 

  

F = 

  

ABD 

  

  
  
  

  

A 

  

. 

  

A' 

  

= 

  

0 

  

  

G 

  

= 

  

( A 

  

+ 

  

B 

  

+ 

  

C 

  

+ 

  

D).(A 

  

+ 

  

B' 
  

+ 

  

C 

  

+ 

  

D) 

  

  

G 

  

= 

  

( A  + 

  

C 

  

+ 

  

G = 

  

A 

  

D) 

  

+ 

  

( B 

  

. 

  

B') 

  

C 

  

+ 

  

D 
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Absorption 

  

A 

  

+ 

  

AB 

  

= 

  

A 

  

  

F 

  

 A' = BC 

  

+  A' 
  

F = 

  

A' 
  

) Covering ( 

  

A.(A 

  

+ 

  

B) 

  

= 

  

A 

  

  

F = A'.(A' +  BC ) 

  

F = 

  

A' 
  

  

G 

  

= 

  

XYZ 

  

+ 

  

X Y' Z 

  

+ 

  

X'Y'Z' 

  

+ 

  

XZ 

  

G 

  

= 

  

X Y Z 

  

+ 

  

XZ 

  

+ 

  

X'Y'Z' 
  

G 

  

= 

  

XZ 

  

+ 

  

X'Y'Z' 

  

  

H = 

  

D 

  

+ 

  

DE 

  

+ 

  

DEF 

  

H 

  

= 

  

D 

  

G 

  

= 

  

XZ .( XZ 

  

+ 

  

Y 

  

+ 

  

Y' ) 

  

G 

  

= 

  

XZ .( XZ 

  

+ 

  

Y ) 

  

G 

  

= 

  

XZ 

  

  

H = 

  

D.(D 

  

+  E 

  

+ 

  

EF) 

  

H 

  

= 

  

D 
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B 

  

  

X 

  

Simplification 

  

A 

  

+ 

  

A'B 

  

  

F 

  

= 

  

( XY 

  

+ 

  

Z) Y'W .( 

  

= 

  

A 

  

+ 

  

B 

  

  

+ 

  

Z'V') 

  

+ 

  

( XY 

  

+ 

  

Z)' 
  

  

F = 

  

Y'W 

  

+ 

  

Z'V' 
  

+ 

  

( XY 

  

+ 

  

Z)' 
  

  
  
  

  

A.(A' 

  

+ 

  

  

G = 

  

( X 

  

+ 

  

Y) .( 

  

( 

  

G = 

  

X ( 

  

+ 

  

) 

  

= 

  

A 

  

. 

  

B 

  

  

+ 

  

Y)' 
  

+ 

  

WZ ( ) 

  

) 

  

Y) 

  

. 

  

WZ 
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c 

  

A 

  

  

  

X 

  

  

Logic 

  

Adjacen 

  

A.B 

  

+ 

  

y 

  

( Combining ) 

  

.B' 

  

= 

  

A 

  

  
  
  
  

F 

  

= 

  

( X 

  

+ 

  

Y). ( W'X'Z ) 

  

+ 

  

( X 

  

+ 

  

Y). W'X'Z)' ( 

  

  

F 

  

= 

  

( 

  

+ 

  

Y) 

  

  
  
  

  

( A 

  

+ 

  

B).(A 

  

+ 

  

B') 

  

= 

  

A 

  

  
  
  

  

G 

  

= 

  

( XY 

  

+ 

  

X'Z' ).( XY 

  

+ 

  

( X'Z')' 

  

) 

  

  

G 

  

= 

  

XY 
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m 

  

x 

  

  

Boolean 

  

  

Exa 

  

Algebra 

  

  

ple: 

  

  
  

Using 

  

Boolean 

  

Algebra, 

  

simplify 

  

the 

  

following 

  

Boolean 

  

e 

  

  

F(A,B,C) 

  

= 

  

A'.B.C 

  

pression. 

  

  

+ 

  

A.B'.C 

  

+ 

  

A.B.C 
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m 

  

x 

  

  

Boolean 

  

  

Exa 

  

Algebra 

  

  

ple: 

  

  
  

Using 

  

Boolean 

  

Algebra, 

  

simplify 

  

the 

  

following 

  

Boolean 

  

e 

  

pression. 

  

  
  

F(A,B,C) = 

  

( A'+B'+C').(A'+B+C').(A+B'+C' ) 
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w 

  

DeMorgan's 

  

Laws 

  

  

⚫ 
  Can 

  

be 

  

stated as 

  

follo 

  

  

  

The 

  

complement 

  

s: 

  

of 

  

the 

  

product 

  

( AND ) 

  

is 

  

the 

  

sum 

  

( OR ) 

  

of 

  

the 

  

complements. 

  

⚫   ( X.Y)'  = 

  

X' 
  

+ 

  

Y' 
  

  

  

The complement 

  

product 

  

( AND ) 

  

of 

  

⚫   + ( X  

  

Y)' 
  

= 

  

X' 
  

. 

  

of 

  

the 

  

sum 

  

) OR ( 

  

is 

  

the 

  

the 

  

complements. 

  

Y' 
  

⚫ 
  Easily 

  

generalized 

  

to 

  

n 

  

⚫ 
  Can 

  

be 

  

proven 

  

using 

  

a 

  

variables. 

  

Truth 

  

table 
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x 
  

x 
  

DeMorgan's 

  

Theorems 

  

  

  

x 
  
1 
  

1   
x 
  
1   

x 
  
2   x 

  
2 
  

2   
  

  

  

( a )   x 
  

1 
  x 

  

2 
  = 

  
x 
  

1 
  + 

  
x 
  

2 
  

  

  

  

  

  

x 
  
1 
  

1   x 
  
1   

x 
  
2   x 

  
2 
  

2   
  

  

  

( b )   x 
  

1 
  + 

  
x 
  

2 
  = 

  x 
  

1 
  x 

  

2 
  

  
  

  

  

x 
  

x 
  



 

 ECE - Digital Electronics  38  

  

  

c 

  

  

  

c 

  

  

Importance 

  

of 

  

Boolean 

  

Algebra 

  

  
  
  
  

⚫   Boolean 

  

Algebra 

  

is 

  

used 

  

to 

  

expressions. 

  

– 

  

Through application of 

  

discussed 

  

simplify 

  

Boolean 

  

  

the 

  

Laws 

  

and 

  

Theorems 

  

  

⚫   Simpler 

  

expressions 

  

lead 

  

to 

  

simpler 

  

circuit 

  

realization, 

  

which, generally, reduces 

  

power 

  

consumption. 

  

⚫   The 

  

objective 

  

of 

  

the 

  

digital 

  

and 

  

realize 

  

optimal 

  

digital 

  

ost, 

  

area 

  

requirements, 

  

and 

  

  

circuit 

  

designer 

  

is 

  

to 

  

design 

  

ircuits. 
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 Algebraic Simplification  

  

  

 ⚫ Justification for simplifying Boolean expressions:  

  

– Reduces the cost associated with realizing the 

expression using logic gates.  

– Reduces the area (i.e. silicon) required to fabricate the 
switching function.   

– Reduces the power c onsumption   of the circuit.  
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⚫ In general, there is no easy way to determine when a 
Boolean expression has been simplified to a minimum 
number of terms or minimum number of literals.  

– No unique solution  

  

  

  

  

  

  

 Algebraic Simplification  

  

⚫ Boolean (or Switching) expressions can 
be  simplified using the following methods:  

  

1. Multiplying out th e expression  

2. Factoring the exp r ession  
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3. Combining terms of the expression  

4. Eliminating terms in the expression  

5. Eliminating literals in  the expression  

6. Adding redundant terms to the expression  

  

As we shall see, there are other tools that can be used to simplify Boolean 

Expressions. Namely, Karnaugh Maps.  

  

  

  

  



 

 

 

  

  
  

  

  

  

  

  
  

Digital Systems: 

  

Combinational 

  

Logic 

  

Circuits 

  



 

 

 

Objectives  

 

⚫ Convert a logic expression into a sum-of-products 
expression.  

⚫ Perform the necessary steps to reduce a sum-of-  



 

 

 

products expression to its simplest form.  

⚫ Use Boolean algebra and the Karnaugh map as tools 
to simplify and design logic circuits.  

⚫ Explain the operation of both exclusive-OR and 
exclusive-NOR circuits.  

⚫ Design simple logic circuits without the help of a truth 

table.  



 

 

Objectives 

(cont’d)  

 

⚫ Implement enable circuits.  

⚫ Cite the basic characteristics of TTL and CMOS digital 

ICs.  



 

 

  

 

⚫ Use the basic troubleshooting rules of digital systems.  

⚫ Deduce from observed results the faults of 
malfunctioning combinational logic circuits.  

⚫ Describe the fundamental idea of programmable logic 
devices (PLDs).  

⚫ Outline the steps involved in programming a PLD to 

perform a simple combinational logic function  

 



 

 

 

Combinational 

Logic Circuits  

 

⚫ The logic level at the output depends on the 

combination of logic levels present at the 

inputs.  



 

 

 

⚫ A combinational circuit has no memory, so its 
output depends only on the current value of its 
inputs.  

⚫ We will not spend a great deal of time discussing 
how to troubleshoot the  

combinational circuits. (That’s what the lab is 

for.)  



 

 

 

  
  
  
  

Sum - of - Products 

  

Form 

  

  

⚫ 
  

Sum 

  

→ 

  

OR   

⚫ 
  

Product 

  

→ 

  

AND   

⚫ 
  

Each of 

  

the 

  

sum - of - products 

  

expression 

  

consists 

  

of 

  

two 

  

or 

  

more 

  

AND 

  

terms 

  

that 

  

are 

  

ORed 

  

together.   

⚫ 
  

Examples: 

  

ABC+A ’ BC ’ 

  

AB+A ’ BC ’ + C ’ D ’ D +   

⚫ 
  

Note 

  

that 

  

one 

  

inversion 

  

sig n 

  

cannot 

  

cover 

  

more than 

  

one 

  

variable 

  

in 

  

a 

  

term. 

  

AB 

  

is 

  

not 

  

allowed.   



 

 

 

  
  
  
  

Product - of - Sums 

  

Form 

  

  

⚫ 

  

Each 

  

of 

  

the 

  

product - of - sums 

  

expression 

  

consists 

  

of 

  

two 

  

or 

  

more 

  

OR 

  

terms 

  

that 

  

are 

  

ANDed 

  

together.   

⚫ 

  

Examples: 

  

( A+B ’ + C)(A+C )   

( A+B ’ )( C ’ + D)F 

  

⚫ 

  

Will 

  

use 

  

sum - of - products 

  

form 

  

in 

  

logic circuit 

  

simplification.   



 

 

 

  
  
  
  

Simplifying 

  

Logic 

  

Circuits 

  

  

⚫ 

  

Goal: 

  

reduce 

  

the 

  

logic 

  

circuit 

  

expression 

  

to 

  

a 

  

simpler 

  

form 

  

so 

  

that 

  

fewer 

  

gates 

  

and 

  

connections 

  

are 

  

required 

  

to 

  

build 

  

the 

  

circuit.   

⚫ 

  

Example: 

  

4.1(a) 

  

and 

  

4.1(b) 

  

are 

  

equivalent, 

  

but 

  

4 - b ) 1( 

  

is 

  

much 

  

simpler.   



 

 

 

  
  
  
  

Example 

  

4.1 

  



 

 

 

  
  
  
  
  

  
  
  

Circuit 

  

Simplification 

  

Methods 

  

  

⚫ 

  

Boolean 

  

algebra: 

  

greatly 

  

depends 

  

on 

  

inspiration 

  

and 

  

experience.   

⚫ 

  

Karnaugh 

  

map: 

  

systematic, 

  

step - by - step 

  

approach.   

⚫ 

  

Pros 

  

and 

  

Cons   



 

 

 

  
  
  
  

Algebraic 

  

Simplification 

  

  

⚫ 

  

Use the Boolean algebra theorems introduced 

  

in Chapter 3 to help simplify the  expression for 

  

a 

  

logic 

  

circuit.   

⚫ 

  

Based 

  

on 

  

experience, 

  

often 

  

becomes 

  

a 

  

trial - 

  

and - error 

  

process.   

⚫ 

  

No 

  

easy 

  

way 

  

to tell 

  

whether 

  

a 

  

simplified 

  

expression 

  

is 

  

in 

  

its 

  

simplest 

  

form.   



 

 

 

  
  
  
  
  
  
  
  
  

Two 

  

Essential 

  

Steps 

  

  

⚫ 

  

The 

  

original 

  

expression 

  

is 

  

put 

  

into 

  

the 

  

sum - of - 

  

products 

  

form 

  

by 

  

repeated 

  

application 

  

of 

  

DeMorgan ’ s 

  

theorem 

  

and 

  

multiplication 

  

of 

  

terms.   

⚫ 

  

The 

  

product 

  

terms 

  

are 

  

checked 

  

for 

  

common 

  

factors, 

  

and 

  

factoring 

  

is 

  

performed 

  

whenever 

  

possible.   



 

 

 

Examples 4-1 to 4-4  

 

 

Original  Simplified  

ABC+AB’(A’C’)’  A(B’+C)  



 

 

ABC+ABC’+AB’C  A(B+C)  

A’C(A’BD)’+A’BC’D’+AB’C  B’C+A’D’(B+C)  

(A’+B)(A+B+D)D’  BD’  

 



 

 

 

  
  
  
  
  

  
  
  

Examples 

  

4 - 5 , 

  

4 - 6 

  

  

⚫ 

  

( A ’ + B)(A+B ’ ): 

  

equivalent 

  

form 

  

A ’ B ’ + AB   

⚫ 

  

AB ’ C+A ’ BD+C ’ D ’ : 

  

cannot 

  

be simplified 

  

further.   



 

 

 

  

Designing 

  

Combinational 

  

Logic 

  

Circuits 

  

  

1. 

  

Set 

  

up 

  

the 

  

truth 

  

table. 

  

2. 

  

Write the 

  

AND 

  

term 

  

for 

  

each 

  

case 

  

where 

  

the 

  

output 

  

is 

  

a 

  

1. 

  

3. 

  

Write 

  

the 

  

sum - of - products 

  

expression 

  

for 

  

the 

  

output. 

  

4. 

  

Simplify the 

  

output  expression. 

  

5. 

  

Implement 

  

the 

  

circuit for 

  

the 

  

final 

  

expression. 

  



 

 

 

  
  
  
  

Example 

  

4 - 8 

  

  

⚫ 

  

Design 

  

a 

  

logic 

  

circuit 

  

that 

  

is 

  

to 

  

produce 

  

a 

  

HIGH 

  

output 

  

when 

  

the 

  

voltage 

  

represented ( 

  

by 

  

a 

  

four - bit 

  

binary 

  

number 

  

ABCD) 

  

is 

  

greater 

  

than 

  

6 V.   



 

 

 

  
  
  
  

Example 

  

4 - 9 

  

  

⚫ 

  

Generate 

  

the 

  

STOP 

  

signal 

  

and 

  

energize 

  

an 

  

indicator light 

  

whenever 

  

either 

  

of the 

  

following 

  

conditions 

  

exists: 

  

(1) 

  

there 

  

is 

  

no 

  

paper 

  

in 

  

the 

  

paper 

  

feeder 

  

tray; or 

  

(2) 

  

the 

  

two 

  

micro - switches 

  

in 

  

the 

  

paper 

  

path 

  

are 

  

activated, 

  

indicating 

  

a 

  

jam.   



 

 

 

  
  
  
  

Karnaugh 

  

Map 

  

Method 

  

  

⚫ 

  

A 

  

graphical 

  

device 

  

to 

  

simplify 

  

a 

  

logic 

  

expression.   

⚫ 

  

Will only 

  

work 

  

on 

  

examples 

  

with 

  

up 

  

to 

  

4 

  

input 

  

variables.   

⚫ 

  

From 

  

truth 

  

table 

  

to 

  

logic 

  

expression 

  

to 

  

K 

  

map.   

⚫ 

  

Figure 

  

4.11 

  

shows 

  

the 

  

K 

  

map 

  

with 

  

2 , 3 

  

and 

  

4 

  

variables.   



 

 

 

Looping  

 

⚫ The expression for output X can be simplified by properly 

combining those squares in the K map which contain 1s. 

The process of combining these 1s is  



 

 

 

called looping.  

⚫ Looping groups of two (pairs) → eliminate 1 variable  

⚫ Looping groups of four (quads) → eliminate 2 variables  

⚫ Looping groups of eight (octets)→ eliminate 3 variables  

⚫ See Figure 4-12 to 4-14.  

  

  

  

  

  

  

  

  

  

Complete Simplification Process  

  



 

 

⚫ Step 1: Construct the K map and places 1s in those 
squares corresponding to the 1s in the truth table. 
Places 0s in the other squares.  

⚫ Step 2: Examine the map for adjacent 1s and loop 
those 1s which are not adjacent to any other 1s. 
(isolated 1s)  

⚫ Step 3: Look for those 1s which are adjacent to only 
one other 1. Loop any pair containing such a 1.  

⚫ Step 4: Loop any octet even when it contains some 1s 
that have already been looped.  

 



 

 

Complete 

Simplification Process  

 

⚫ Step 5: Loop any quad that contains one or 

more 1s that have not already been looped, 

making sure to use the minimum number of  



 

 

 

loops.  

⚫ Step 6: Loop any pairs necessary to include 
any 1s have not already been looped, making 
sure to use the minimum number of loops.  

⚫ Step 7: Form the ORed sum of all the terms 

generated by each loop.  

 



 

 

Filling K Map 

from Output Expression  

 

⚫ What to do when the desired output is 

presented as a Boolean expression instead of a 

truth table?  



 

 

 

⚫ Step 1: Convert the expression into SOP form.  

⚫ Step 2: For each product term in the SOP 
expression, place a 1 in each K-map square 
whose label contains the same combination of 
input values. Place a 0 in other squares.  

⚫ Example 4-14: y=C’(A’B’D’+D)+AB’C+D’  

  

  

  

  

  

  

  

  

Don’t-Care Conditions  

  



 

 

⚫ Some logic circuits can be designed so that 

there are certain input conditions for which 

there are no specified output levels.  

⚫ A circuit designer is free to make the output for 

any don’t care condition either a 0 or a 1 in 

order to produce the simplest output 

expression.  

⚫ Figures 4-18,19.  



 

 

 



 

 

 



 

 

  

  
  

  

  

  

  

  

Example 

  

4 - 17 

  

  

⚫ 

  

Design a logic circuit, using x 1 
, x 0 

, y 1 
  and y 

inputs, whose 

  

output 

  

will 

  

be 

  

HIGH 

  

only 

  

when 

  

the 

  

two 

  

binary 

  

numbers 

  

x 1 x 0 
  and 

  

y 1 y 0 
  are 

  

equal.   

⚫ 

  

Hint: 

  

use 

  

XNOR 

  

gates 

  

( Figure 

  

4 - 23 )   



 

 

0   



 

 

 

  
  
  
  

  

Using 

  

XNOR 

  

to 

  

Simplify 

  

Circuit 

  

Implementation 

  

  

⚫ 
  

Example 

  

4 - 18   



 

 

 

  
  
  
  
  
  
  
  
  

Parity 

  

Generator 

  

  
  
  
  
  
  
  
  
  
  

V1   

0 V   
U1A   

V2   

0 V   

  

  

  

L1   

U1C   

  

V3   

V 5   
U1B   

  

V4   

V 5   



 

 

 



 

 

 

 

Error  

 

  
  

  
  

  
  
  

  
  

Even - parity 

  

Checker
  
  
  
  
  

V5   

0 V   

  

  

  

V1   

0 V   
U1C   

V2   

0 V   

  

  

  

  

  

V3   

5 V   
U1B   

  

V4   

5 V   



 

 

  

  

  

  

  

  

  

  

  

Enable/Disable Circuits  

  

⚫ Each of the basic logic gates can be used to 

control the passage of an input logic signal 

through to the output.  

⚫ A: input, B: control (Figure 4-26)  

⚫ The logic level at the control input determines 

whether the input signal is enabled to reach the 

output or disabled from reaching the output.  



 

 

 

  
  
  
  
  
  
  
  
  

Basic 

  

Characteristics 

  

of 

  

Digital 

  

ICs 

  

  

⚫ 

  

Digital 

  

ICs 

  

are 

  

a 

  

collection 

  

of resistors, diodes 

  

and 

  

transistor 

  

fabricated 

  

on 

  

a 

  

single 

  

piece 

  

of 

  

semiconductor 

  

material 

  

called 

  

a 

  

substrate, 

  

which 

  

is 

  

commonly 

  

referred 

  

to 

  

as 

  

a 

  

chip .   

⚫ 

  

The 

  

chip 

  

is 

  

enclosed 

  

in 

  

a 

  

package.   

⚫ 

  

Dual - in - line 

  

package 

  

) ( DIP   



 

 

 

Integrated 

Circuits  

 

 

Complexity  Number of Gates  

Small-scale integration(SSI)  <12  

Medium-scale integration(MSI)  12 to 99  

Large-scale integration(LSI)  100 to 9999  

Very large-scale integration(VLSI)  10,000 to 99,999  



 

 

Ultra large-scale integration(ULSI)  100,000 to 999,999  

Giga-scale integration (GSI)  1,000,000 or more  

 

  

  

  

  

  

  

  

  

Bipolar and Unipolar Digital ICs  

  

⚫ Categorized according to the principal type of 

electronic component used in their circuitry.  

⚫ Bipolar ICs are those that are made using the 

bipolar junction transistor (PNP or NPN).  



 

 

⚫ Unipolar ICs are those that use the unipolar 

field-effect transistors (P-channel and N- 

channel MOSFETs).  



 

 

 

  
  
  
  
  
  
  
  
  

IC 

  

Families 

  

  

⚫ 

  

TTL 

  

Family: 

  

bipolar 

  

digital 

  

ICs (Table 

  

4 - 6)   

⚫ 

  

CMOS 

  

Family: 

  

unipolar 

  

digital ICs 

  

Table ( 

  

4 - 7)   

⚫ 

  

TTL 

  

and 

  

CMOS 

  

dominate 

  

the 

  

field 

  

of 

  

SSI 

  

and 

  

MSI 

  

devices.   



 

 

 

TTL 

Family  

 

 

 

TTL Series  Prefix  Example 

IC  

Standard TTL  74  7404 

(hex 

inverter)  

Schottky TTL  74S  74S04  



 

 

Low-power  

Schottky TTL  

74LS  74LS04  

Advanced Schottky  

TTL  

74AS  74AS04  

Advanced low- power 

Schottky TTL  

74ALS  74ALS04  

 

 

CMOS 

Family  

 

 



 

 

 

CMOS Series  Prefix  
Example 

IC  

Metal-gate CMOS  40  4001  

Metal-gate, pin-compatible with TTL  74C  74C02  

Silicon-gate, pin-compatible with TTL, high-

speed  

74HC  74HC02  

Silicon-gate, high-speed, pin- 

compatible and electrically compatible 

with TTL  

74HCT  74HCT02  

Advanced-performance CMOS, not pin or electrically 

compatible with TTL  
74AC  74AC02  

Advanced-performance CMOS, not pin but 

electrically compatible with TTL  
74ACT  74ACT02  

 



 

 

 

  
  
  
  
  

  
  
  

Power 

  

and 

  

Ground 

  

  

⚫ 

  

To 

  

use 

  

digital 

  

IC, 

  

it 

  

is 

  

necessary 

  

to 

  

make 

  

proper 

  

connection 

  

to 

  

the 

  

IC 

  

pins.   

⚫ 

  

Power: 

  

labeled 

  

V cc 
  for 

  

the 

  

TTL 

  

circuit, 

  

labeled 

  

V DD 
  for 

  

CMOS 

  

circuit.   

⚫ 

  

Ground   



 

 

 

  
  
  
  

Logic - level 

  

Voltage 

  

Ranges 

  

  

⚫ 

  

For 

  

TTL 

  

devices, 

  

V CC 
  is 

  

normally 

  

5 V.   

⚫ 

  

F or 

  

CMO S 

  

c i r c u i t s , 

  

V D D      c an 

  

range 

  

from 

  

3 - 18 V .   

⚫ 

  

For 

  

TTL, 

  

logic 

  

0 

  

: 

  

0 - 0 ,8V, 

  

logic 

  

1:2 - 5 V   

⚫ 

  

For 

  

CMOS, 

  

logic 

  

0 

  

: 

  

0 - V, 1.5 

  

logic 

  

1:3.5 - 5 V   



 

 

 

  
  
  
  

Unconnected 

  

Inputs 

  

  

⚫ 

  

Also 

  

called 

  

floating 

  

inputs.   

⚫ 

  

A 

  

floating 

  

TTL 

  

input 

  

acts 

  

like 

  

a 

  

logic 

  

1 , 

  

but 

  

measures 

  

a 

  

DC 

  

level 

  

of 

  

between 

  

1.4 

  

and 

  

1.8 V.   

⚫ 

  

A CMOS 

  

input 

  

cannot 

  

be 

  

left 

  

floating.   



 

 

 

  
  
  
  

Logic - Circuit 

  

Connection 

  

Diagrams 

  

  

⚫ 

  

A connection 

  

diagram 

  

shows 

  

all 

  

electrical 

  

connections, 

  

pin 

  

numbers, 

  

IC 

  

numbers, 

  

component 

  

values, 

  

signal 

  

names, 

  

and 

  

power 

  

supply 

  

voltages.   

⚫ 

  

See 

  

Figure 

  

4 - 32.   



 

 

 

  
  
  
  

Troubleshooting 

  

Digital 

  

Systems 

  

  

⚫ 

  

Fault 

  

detection   

⚫ 

  

Fault 

  

isolation   

⚫ 

  

Fault correction   

⚫ 

  

Good 

  

troubleshooting 

  

techniques 

  

can 

  

be 

  

learned 

  

only 

  

through 

  

experimentation 

  

and 

  

actual 

  

troubleshooting 

  

of 

  

faulty circuits.   



 

 

 

  
  
  
  

Troubleshooting 

  

Tools 

  

  

⚫ 

  

Logic 

  

probe   

⚫ 

  

Oscilloscope   

⚫ 

  

Logic 

  

pulser   

⚫ 

  

Current 

  

tracer   

⚫ 

  

… 

  

and 

  

your 

  

BRAIN!   

Indicator 

  

Light 

  

Logic 

  

Level 

  

OFF 

  

LOW 

  

ON 

  

HIGH 

  

DIM 

  

INTERMEDIATE 

  

FLASHING 

  

PULSING 

  



 

 

  

  

  

  

Internal IC Faults  

  

⚫ Malfunction is the internal circuitry.  

⚫ Inputs or outputs shorted to ground or Vcc  

(Figure 4.34, 4-35)  

⚫ Inputs or outputs open-circuited (Figure 4.36)  

⚫ Short between two pins (other than ground or 

Vcc): whenever two signals that are supposed 

to be different show the same logic-level 

variations.  

 



 

 

External 

Faults  

 

⚫ Open signal lines:Broken wire, Poor solder connection, 

Crack or cut trace on a printed circuit board, Bend or 

broken pin on a IC, faulty IC socket.  



 

 

 

⚫ Shorted signal lines: sloppy wiring, solder bridges, 

incomplete etching.  

⚫ Faulty power supply  

⚫ Output loading: when an output is connected to too 

many IC inputs.  



 

 

 

  
  
  
  
  
  
  
  
  

Programmable 

  

Logic 

  

Device 

  

  

⚫ 

  

PLD 

  

is 

  

an 

  

integrated 

  

circuit 

  

that 

  

contains 

  

a 

  

particular 

  

arrangement 

  

of logic 

  

gates. (Figure 

  

4.41)   

⚫ 

  

Useful 

  

in 

  

implementing 

  

complex 

  

circuits 

  

containing 

  

tens 

  

or 

  

thousands 

  

of 

  

logic 

  

gates.   

⚫ 

  

Sum - of - products 

  

form   





 

1  

Sequential Digital Circuits  

• Sequential circuits are digital circuits in which the outputs 

depend not only on the current inputs, but also on the previous 

state of the output.  

• They basic sequential circuit elements can be divided in two 

categories:  

• Level-sensitive (Latches) – High-level sensitive  

– Low-level sensitive  

• Edge-triggered (Flip-flops)  

– Rising (positive) edge triggered  

– Falling (negative) edge triggered  

– Dual-edge triggered  



 

  Digital Logic for Computers  2  

  Digital Logic for Computers - Frederick  

The Set/Reset (SR) Latch  
    

The Set/Reset latch is the most basic unit of sequential digital circuits. It has two 

inputs (S and R) and two outputs outputs Q and Q’. The two outputs must always be 

complementary, i.e if Q is 0 then Q’ must be 1, and vice-versa. The S input sets the Q 

output to a logic 1. The R input resets the Q output to a logic 0.  



  

 Digital Logic    3  

 

  

The Gated Set/Reset (SR) Latch  
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To be able to control when the S and R inputs of the SR latch can be applied to the latch 

and thus change the outputs, an extra input is used. This input is called the Enable. If the 

Enable is 0 then the S and R inputs have no effect on the outputs of the SR latch. If the 

Enable is 1 then the Gated SR latch behaves as a normal SR latch.  

  

 

  

  

  

Circuit   Diagram   

  

Truth   Table   
  

Truth   Table   

  

S   EN   S   R   Q +   EN   S   R   Q +   Function   
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

  

for   Computers 

S   Q   Q   

EN   
0   

R   Q   Q   
R   

Logic   Symbol   

0   

0   

0   

1   

1   

1   

1   

0   

0   

1   

1   

0   

0   

1   

1   

0   

1   

0   

1   

0   

1   

0   

1   

Q   

Q   

Q   

Q   

Q   

0   X   X   

1   0   0   

1   0   1   

1   1   0   

1   1   1   

S   

EN   

R   

Q   0   

1   

Q   
U   
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SR Latch :- Example  
  

Complete the timing diagrams for :  

(a) Simple SR Latch  

(b) SR Latch with Enable input.  

Assume that for both cases the Q output is initially at logic zero.  
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The Data (D) Latch  
  

A problem with the SR latch is that the S and R inputs can not be at logic 1 at the 

same time. To ensure that this can not happen, the S and R inputs can by connected 

  

a ) (   ( ) b   

Set   Enable   

Reset   Set   

Reset   

Q   

Q   
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through an inverter. In this case the Q output is always the same as the input, and the 

latch is called the Data or D latch. The D latch is used in Registers and memory 

devices.  

    

 Circuit Diagram 

 Truth Table  Truth Table  

Logic Symbol  

  

EN  D  Q  Q+  

      

0  0  0  Q  

0  0  1  Q  

0  1  0  Q  

0  1  1  
Q  

1  0  0  0  

1  0  1  0  

1  1  0  1  

1  1  1  1  

EN  D  Q+  Function  

0  0      

0  1      

1  0  
    

1  1  
    

D   
Q   

EN   

Q   Q   R   

Q   S   

D   Q   
  
EN   

  
Q   
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The JK Latch  
  

Another way to ensure that the S and R inputs can not be at logic 1 simultaneously, is 

to cross connect the Q and Q’ outputs with the S and R inputs through AND gates. 

The latch obtained is called the JK latch. In the J and K inputs are both 1 then the Q 

output will change state (Toggle) for as long as the Enable 1, thus the output will be 

unstable. This problem is avoided by ensuring that the Enable is at logic 1 only for a 

very short time, using edge detection circuits.    
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Circuit Diagram  

 

Logic Symbol  

 

 Truth Table  Truth Table  
 

EN  J  K  Q  Q+  

0  X  X  X  Q  

1  0  0  0  0  

1  0  0  1  1  

1  0  1  0  0  

1  0  1  1  0  

1  1  0  0  1  

1  1  0  1  1  

1  1  1  0  1  

1  1  1  1  0  
 

 

EN  J  K  Q+  Function  

0  X  X  
    

1  0  0      

1  0  1  
    

1  1  0  
    

1  1  1  
    

 

 

  

J   Q 
  
EN   

  
K   Q 

EN   

K   



 

  Digital Logic for Computers  11  

  

Latches and Flip-Flops  
    

  

  

• Latches are also called transparent or level triggered flip flops, 

because the change on the outputs will follow the changes of the 

inputs as long as the Enable input is set.  

• Edge triggered flip flops are the flip flops that change there outputs 

only at the transition of the Enable input. The enable is called the 

Clock input.  

  

Edge Detection Circuits  
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Edge detection circuits are used to detect the transition of the Enable from logic 0 to 

logic 1 (positive edge) or from logic 1 to logic 0 (negative edge). The operation of the 

edge detection circuits shown below is based on the fact that there is a time delay 

between the change of the input of a gate and the change at the output. This delay is 

in the order of a few nanoseconds. The Enable in this case is called the Clock (CLK)  

 Positive Edge Detection  Negative Edge Detection  

 

  

EN   
EN'   EN   

EN'   

EN   
EN   

EN   

EN   EN   

EN   

EN   

EN   

EN'   EN'   
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The JK Edge Triggered Flip Flop  

The JK edge triggered flip flop can be obtained by inserting an edge detection circuit at 

the Enable (CLK) input of a JK latch. This ensures that the outputs of the flip flop will 

change only when the CLK changes (0 to 1 for +ve edge or 1 to 0 for –ve edge)  
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The D Edge Triggered Flip Flop  

The D edge triggered flip flop can be obtained by connecting the J with the K inputs 

of a JK flip through an inverter as shown below. The D edge trigger can also be 

obtained by connecting the S with the R inputs of a SR edge triggered flip flop 

through an inverter.  
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Positive Edge D Flip Flop  

 

Logic Symbol  

    
  
  
  

  
  

 

CLK  D  QN+1  Function  

  

X  
Q    

0  
  0  

  

 1  
1    

 

 

Negative Edge D Flip Flop  

 

Logic Symbol  CLK  D  QN+1  Function  

X  Q  
  

 0  0    

 1  1    

   

  

CLK   

  Q   

D   Q   

D   

CLK   

Q   
  

  
Q   K   Q   

J   Q   K   Q   

J   Q   D   Q   

CLK   

Q   

CLK   

D   Q   

Q   



  

  

 

  

Digital Logic for Computers  

10  

The Toggle (T) Edge Triggered Flip Flop  

The T edge triggered flip flop can be obtained by connecting the J with the K inputs 

of a JK flip directly. When T is zero then both J and K are zero and the Q output does 

not change. When T is one then both J and K are one and the Q output will change to 

the opposite state, or toggle.  
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Flip Flops with asynchronous inputs (Preset and Clear)  

Two extra inputs are often found on flip flops, that either clear or preset the output. 

These inputs are effective at any time, thus are called asynchronous. If the Clear is at 



  

  

 

logic 0 then the output is forced to 0, irrespective of the other normal inputs. If the 

Preset is at logic 0 then the output is forced to 1, irrespective of the other normal 

inputs. The preset and the clear inputs can not be 0 simultaneously. In the Preset and 

Clear are both 1 then the flip flop behaves according to its normal truth table.  

    



 

 Digital Logic for Computers  22  

  

 Data (D) Latch :- Example  
  

Complete the timing diagrams for :  

(a) D Latch  

(b) JK Latch  

Assume that for both cases the Q output is initially at logic zero.  
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 JK Edge Triggered Flip Flop :- Example  
  

Complete the timing diagrams for :  

(a) Positive Edge Triggered JK Flip Flop  

(b) Negative Edge Triggered JK Flip Flop  

Assume that for both cases the Q output is initially at logic zero.  
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D and T Edge Triggered Flip Flops :- Example    

Complete the timing diagrams for :  

(a) Positive Edge Triggered D Flip Flop  

(b) Positive Edge Triggered T Flip Flop  

(c) Negative Edge Triggered T Flip Flop  
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(d) Negative Edge Triggered D Flip Flop  
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JK Flip Flop With Preset and Clear:- Example  
    

Complete the timing diagrams for :  

(a) Positive Edge Triggered JK Flip Flop  

(b) Negative Edge Triggered JK Flip Flop.  

Assume that for both cases the Q output is initially at logic zero.  
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Level Triggered Master Slave JK Flip Flop  
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Edge Triggered Master Slave JK Flip Flop  
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Sequential circuit example 1  
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Sequential circuit example 2  
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Sequential circuit example 3  
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