

 1

E-Contents of Digital Electronics

1

Kapil Bhoria

NUMBER SYSTEMS

AND CODES

Arithmetic operations using decimal numbers are quite common. However, in logical

design it is necessary to perform manipulations in the so-called binary system of num- bers

because of the on-off nature of the physical devices used. The present chapter is intended

to acquaint the reader with the fundamental concepts involved in dealing with number

systems other than decimal. In particular, the binary system is covered in con- siderable

detail.

 POSITIONAL NOTATION

An ordinary decimal number can be regarded as a polynomial in powers of 10. For ex-

ample, 423.12 can be regarded as 4 102 + 2 101 + 3 100 + 1 101 + 2 102. Decimal

numbers like this are said to be expressed in a number system with base, or radix, 10

because there are 10 basic digits (0, 1, 2, …, 9) from which the number system is

formulated. In a similar fashion we can express any number N in a system using any base

b. We shall write such a number as (N)b . Whenever (N)b is written, the convention of

always expressing b in base 10 will be followed. Thus (N)b = (pn pn1 … p1p0 . p 1p 2

… pm)b where b is an integer greater than 1 and 0 < pi < b 1. The value of a number

represented in this fashion, which is called positional notation, is given by

 (N)b = pn bn + pn-1 bn- + … + p0 b0 + p- b- (1.1-1)

+ p- b-+ … + pm bm

n

 (N)b =  pi bi
 (1.1-2)

i = -m

For decimal numbers, the symbol “.” is called the decimal point; for more gen- eral

base-b numbers, it is called the radix point. That portion of the number to the right of

 2 Number Systems and Codes Chap. 1

the radix point (p- p-… pm) is called the fractional part, and the portion to the left of

the radix point (pnpn 1 … p0) is called the integral part.

Numbers expressed in base 2 are called binary numbers. They are often used in

computers since they require only two coefficient values. The integers from 0 to 15 are

given in Table 1.1-1 for several bases. Since there are no coefficient values for the range

10 to b 1 when b > 10, the letters A, B, C, . . . are used. Base-8 numbers are called octal

numbers, and base-16 numbers are called hexadecimal numbers. Octal and

hexadecimal numbers are often used as a shorthand for binary numbers. An octal number

can be converted into a binary number by converting each of the octal co- efficients

individually into its binary equivalent. The same is true for hexadecimal numbers. This

property is true because 8 and 16 are both powers of 2. For numbers with bases that are not

a power of 2, the conversion to binary is more complex.

1.1-1 Conversion of Base

To make use of nondecimal number systems, it is necessary to be able to convert a number

expressed in one base into the correct representation of the number in another base. One

way of doing this makes direct use of the polynomial expression (1.1-1). For example,

consider the binary number (1011.101)2 . The corresponding polynomial expression is

1  23 + 0  22 + 1  21 + 1  20 + 1  2 1 + 0 2 2 + 1  2 3

or 8 + 2 + 1 + 1/2 + 1/8 or 11 + 5/8 = 11.625

 TABLE 1.1-1 Integers in various bases

2 3 4 5 … 8 … 10 11 12

 … 16

 0001 001 01 01 01 01 01 01 1

 0010 002 02 02 02 02 02 02 2

 0011 010 03 03 03 03 03 03 3

 0100 011 10 04 04 04 04 04 4

 0101 012 11 10 05 05 05 05 5

 0110 020 12 11 06 06 06 06 6

N)b 0111 021 13 12 07 07 07 07 7

 1000 022 20 13 10 08 08 08 8

 1001 100 21 14 11 09 09 09 9

 1010 101 22 20 12 10 0A 0A A

 1011 102 23 21 13 11 10 0B B

 Sec. 3

(

This technique of directly evaluating the polynomial expression for a number is a

general method for converting from an arbitrary base b1 to another arbitrary base b2. For

convenience, it will be called the polynomial method. This method consists in:

1. Expressing the number (N)b1 as a polynomial, with base-b2 numbers used in the

polynomial.

2. Evaluating the polynomial, base-b2 arithmetic being used.

This polynomial method is most often used by human beings whenever a number is

to be converted to base 10, since it is then possible to use decimal arithmetic.

This method for converting numbers from one base to another is the first example of

one of the major goals of this book: the development of algorithms. In general terms, an

algorithm is a list of instructions specifying a sequence of operations which will give the

answer to any problem of a given type. The important characteristics of an algorithm are:

(1) that it is fully specified and does not rely on any skill or intuition on the part of the

person applying it and (2) that it always works, (i.e., that a correct answer is always

obtained.) The notion of an algorithm is discussed in more detail in Section 1.1 of [Knuth

68].

It is not always convenient to use base-b2 arithmetic in converting from base-b1 to

base-b2 . An algorithm for carrying out this conversion by using base-b1 arithmetic will be

discussed next. This discussion is specifically for the situation in which b1 =

10, but it can be extended easily to the more general case. This will be called the it- erative

method, since it involves iterated multiplication or division.

In converting (N)10 to (N)b the fraction and integer parts are converted separately.

First, consider the integer part (portion to the left of the decimal point). The general

conversion procedure is to divide (N)10 by b, giving (N) 10 /b and a remainder. The

remainder, call it p , is the least significant (rightmost) digit of (N) . The next least
 0 b

significant digit, p1 , is the remainder of (N) 10 /b divided by b, and succeeding digits are

obtained by continuing this process. A convenient form for carrying out this conversion is

illustrated in the following example.

Example 1.1-1

 1100 110 30 22 14 12 11 10 C

 1101 111 31 23 15 13 12 11 D

 1110 112 32 24 16 14 13 12 E

 1111 120 33 30 17 15 14 13 F

 4 Number Systems and Codes Chap. 1

(a) (23)10 = (10111)2 (Remainder)

 1

 1

 1

 0

 1

(b) (23)10 = (27)8 (Remainder)

 7

 2

 1.1 Positional Notation

(c) (410)10 = (3120)5 (Remainder)

 0

 2

 1

3

Now consider the portion of the number to the right of the decimal point, i.e., the

fractional part. The procedure for converting this is to multiply (N)10 (fractional) by b. If

the resulting product is less than 1, then the most significant (leftmost) digit of the fractional

part is 0. If the resulting product is greater than 1, the most significant digit of the fractional

part is the integral part of the product. The next most significant digit is formed by

multiplying the fractional part of this product by b and taking the integral part. The

remaining digits are formed by repeating this process. The process may or may not

terminate. A convenient form for carrying out this conversion is illustrated be- low.

Example 1.1-2.

2 23

2 11

2 5

2 2

2 1

 0

8 23

8 2

 0

5 410

5 82

5 16

5 3

 0

 (c) (27.68)10 = (11011.101011 . . .)2

= (33.53 . . .)8

0.68 x 2 = 1.36
0.1

 Sec. 5

(a) (0.625)10 = (0.5)8

 0.625 x 8 = 5.000

0.5

(b)(0.23)10 = (0.001110 . . .)2 0.23 x 2 = 0.46 0.0

 0.46 x 2 = 0.92 0.00

 0.92 x 2 = 1.84 0.001

 0.84 x 2 = 1.68 0.0011

 0.68 x 2 = 1.36 0.00111

= 0.72 0.001110
…

 0.36 x 2

2 0.10

2 0.101

2 0.1010

2 0.10101

0 1 0.76 x 2 = 1.52 0.101011

 …

 0.68 x 8 = 5.44 0.5

 3 0.44 x 8 = 3.52 0.53 …

 3

This example illustrates the simple relationship between the base-2 (binary) sys- tem

and the base-8 (octal) system. The binary digits, called bits, are taken three at a time in

each direction from the binary point and are expressed as decimal digits to give the

corresponding octal number. For example, 101 in binary is equivalent to 5 in decimal; so

the octal number in part (c) above has a 5 for the most significant digit of the fractional

part. The conversion between octal and binary is so simple that the octal expression is

sometimes used as a convenient shorthand for the corresponding binary

number.

When a fraction is converted from one base to another, the conversion may not

terminate, since it may not be possible to represent the fraction exactly in the new base with

a finite number of digits. For example, consider the conversion of (0.1)3 to a base-10

fraction. The result is clearly (0.333 …)10, which can be written as (0.3)10 to indicate

that the 3's are repeated indefinitely. It is always possible to represent the result of a

 2 27

13 1 0.36 x 2 = 0.72

6 1 0.72 x 2 = 1.44

3 0 0.44 x 2 = 0.88

1 1 0.88 x 2 = 1.76

8 27

8 3

 0

 6 Number Systems and Codes Chap. 1

conversion of base in this notation, since the nonterminating fraction must consist of a

group of digits which are repeated indefinitely. For example, (0.2)11 = 2 x 111 = (0.1818

…)10 = (0.018)10.

It should be pointed out that by combining the two conversion methods it is pos- sible

to convert between any two arbitrary bases by using only arithmetic of a third base. For

example, to convert (16)7 to base 3, first convert to base 10,

(16)7 = 1 71 + 6  70 = 7 + 6 = (13)10 Then

convert (13)10 to base 3,

 (Remainder)

 1 (16)7 = (13)10 = (111)3

 1

 1

For more information about positional number systems, the following references are

good sources: [Chrystal 61] and [Knuth 69].

 BINARY ARITHMETIC

Many modern digital computers employ the binary (base-2) number system to represent

numbers, and carry out the arithmetic operations using binary arithmetic. While a de- tailed

treatment of computer arithmetic is not within the scope of this book, it will be useful to

have the elementary techniques of binary arithmetic available. In performing decimal

arithmetic it is necessary to memorize the tables giving the results of the elemen- tary

arithmetic operations for pairs of decimal digits. Similarly, for binary arithmetic the tables

for the elementary operations for the binary digits are necessary.

1.2-1 Binary Addition

The binary addition table is as follows:

 Sum Carry

 0 + 0 = 0 0

0 + 1 = 1 0

1 + 0 = 1 0

1 + 1 = 0 1

Addition is performed by writing the numbers to be added in a column with the binary

points aligned. The individual columns of binary digits, or bits, are added in the usual

order according to the above addition table. Note that in adding a column of

1.2 Binary Arithmetic

3 13

3 4

3 1

3 0

 Sec. 7

bits, there is a 1 carry for each pair of 1's in that column. These 1 carries are treated as bits

to be added in the next column to the left. A general rule for addition of a column of

numbers (using any base) is to add the column decimally and divide by the base. The

remainder is entered as the sum for that column, and the quotient is carried to be added in

the next column.

 Example 1.2-1

Base 2

 Carries: 10011 11

 1001.011 = (9.375)10

 1101.101 =(13.625)10
 10111.000 = (23)10 = Sum

1.2-2 Binary Subtraction

The binary subtraction table is as follows:

 Difference Borrow

0 0 = 0 0

0 1 = 1 1

1 0 = 1 0

1 1 = 0 0

Subtraction is performed by writing the minuend over the subtrahend with the bi-

nary points aligned and carrying out the subtraction according to the above table. If a

borrow occurs and the next leftmost digit of the minuend is a 1, it is changed to a 0 and the

process of subtraction is then continued from right to left.

 Base 2 Base 10

 Borrow: 1

 0

Minuend Subtrahend 1\0

01

2

1

Difference 01 1

If a borrow occurs and the next leftmost digit of the minuend is a 0, then this 0 is

changed to a 1, as is each successive minuend digit to the left which is equal to 0. The first

minuend digit to the left which is equal to 1 is changed to 0, and then the subtrac- tion

process is resumed.

 8 Number Systems and Codes Chap. 1

 Base 2 Base 10

Borrow: 1

 011

Minuend 11\0\0\0 24

Subtrahend 10001 17

Difference 00111 7

Borrow: 1 1

Minuend

01011
1\0\1\0\0\0 40

Subtrahend 011001 25

Difference 001111 15

1.2-3 Complements

It is possible to avoid this subtraction process by using a complement representation for

negative numbers. This will be discussed specifically for binary fractions, although it is

easy to extend the complement techniques to integers and mixed numbers. The 2's

complement (2B) of a binary fraction B is defined as follows:

2B = (2 B)10 = (10 B)2

Thus, 2(0.1101) = 10.0000 0.1101 = 1.0011. A particularly simple means of carry- ing out

the subtraction indicated in the expression for 2(0.1101) is obtained by noting that 10.0000

= 1.1111 + 0.0001. Thus, 10.0000 0.1101 = (1.1111 0.1101) + 0.0001. The subtraction

1.1111 0.1101 is particularly easy, since all that is neces- sary is to reverse each of the

digits of 0.1101 to obtain 1.0010. Finally, the addition of 0.0001 is also relatively simple,

and yields 1.0011. In general, the process of forming 2B involves reversing the digits of B

and then adding 0.00 … 01.

The usefulness of the 2's complement stems from the fact that it is possible to ob-

tain the difference A B by adding 2B to A. Thus, A + 2B = (A + 10 B)2 = (10 + (A

B))2 . If (A B) > 0, then (10 + A B)2 will be 10 plus the positive fraction (A

B). It is thus possible to obtain A B by dropping the leftmost 1 in A + 2B. For ex-

ample,

A = 0.1110 A = 0.1110

 B = 0.1101 + 2B =

 0.0001

 Sec. 9

If (A B) < 0, then A + 2B = (10  |A B|)2, which is just equal to 2(A B), the 2's-

complement representation of A B. For example,

 A = 0.1101 A = 0.1101

 B = 0.1110 + 2B = 1.0010

 –0.0001 1.1111 2(0.0001) = 1.1111

The 1's complement is also very commonly used. This is defined as

If A + 1B is formed, the result is (A B + 10  0.000 … 1)2. If (A B) > 0, this can

be converted to A B by removing the (10)2 and adding a 1 to the least significant digit of

A + 1B. This is called an end-around carry. For example:

A = 0.1110 A = 0.1110

B = 0.1101 + 1B = +1.0010

 0.0001 A + 1B = 10.0000



     

  End-around

  carry



 so that A  B = 0.0001

If (A B) < 0, then A + 1B will be the 1's complement of |A B|. For example,

 A = 0.1101 A = 0.1101

 B = 0.1110 1B = 1.0001

1 1B = (10  0.000 … 1 B)2

where the location of the 1 in 0.000 … 1 corresponds to the least significant digit of B.

Since (10 0.000 … 1)2 is equal to 01.111 … 1, it is possible to form 1B by revers- ing

the digits of B and adding a 1 before the radix point. Thus, 1(0.1101) = 1.0010.

 1.2 Binary Arithmetic

 10 Number Systems and Codes Chap. 1

 0.0001 A + 1B = 1.1110 1(0.0001) = 1.1110

The radix complement of a base-b fraction F is defined as

bF = (10 F)b

and the diminished radix complement is defined as

b 1F = (10 F  0.000 … 1)b

Similar procedures hold for the formation of the complements and their use for subtrac-

tion.

When integers or mixed numbers are involved in the subtractions, the definitions of

the complements must be generalized to

bN = (100 … 0. N)b

 and b 1N = (100 … 0. N  0.00 … 1)b

where 100 … 0 contains two more digits than any integer to be encountered in the sub-

tractions. For example, if (N)2 = 11.01, then

 2(N)2 = 1000.00 11.01

 = 111.11 11.01 + 0.01

 = 100.10 + 0.01

 = 100.11

M = 11.10

M = 11.10

N = 11.01 2N = 100.11

 0.01 1000.01





Discard

1.2-4 Shifting

In carrying out multiplication or division there are intermediate steps which require that

numbers be shifted to the right or the left. Shifting a base-b number k places to the right

has the effect of multiplying the number by b-k
 , and shifting k places to the left is equivalent

to multiplication by b+k
 . Thus, if n

(N)b =


 pi b
i = (pn pn- … p1 p0 . p1 p2 … pm)b i =-m

shifting (N)b k places to the left yields

n

(pn pn-1 … p1 p0 p1 … pk . p k  … pm)b =


 pi bi+k
 i =-

m

and
 n n


 pi b i+k = b k


 pi bi = b k (N)b i =m

 i =m

A similar manipulation shows the corresponding situation for right shifts. Shifting

the binary point k places (k positive for right shifts and negative for left shifts) in a bi- nary

number multiplies the value of the number by 2k
 . For example,

 (110.101)2 = (6.625)10

 (6.62)

 (1.10101)2 = 22 (6.625)10 = 10 = (1.65625)10

 (11010.1)2 = 2+2 (6.625)10 = (4 6.625)10 = (26.5)10

1.2-5 Binary Multiplication

The binary multiplication table is as follows:

0  0 = 0

0  1 = 0

1  0 = 0

1  1 = 1

The process of binary multiplication is illustrated by the following example:

 110.10 Multiplicand

10.1 Multiplier

 12 Number Systems and Codes Chap. 1

 11010 Partial Product

 00000 Partial Product

 Partial Product

 Sec. 1.2 Binary Arithmetic 9

For every digit of the multiplier which is equal to 1, a partial product is formed consisting

of the multiplicand shifted so that its least significant digit is aligned with the 1 of the

multiplier. An all-zero partial product is formed for each 0 multiplier digit. Of course, the

all-zero partial products can be omitted. The final product is formed by summing all the

partial products. The binary point is placed in the product by using the same rule as for

decimal multiplication: the number of digits to the right of the binary point of the product

is equal to the sum of the numbers of digits to the right of the binary points of the multiplier

and the multiplicand.

The simplest technique for handling the multiplication of negative numbers is to use

the process just described to multiply the magnitudes of the numbers. The sign of the

product is determined separately, and the product is made negative if either the multiplier

or the multiplicand, but not both, are negative. It is possible to carry out multiplication

directly with negative numbers represented in complement form. This is usually done using

a recoding scheme called Booth's Algorithm, [Waser 82], which also speeds up the

multiplication.

1.2-6 Binary Division

Division is the most complex of the four basic arithmetic operations. Decimal long division

as taught in grade school is a trial-and-error process. For example, in dividing 362 by 46

one must first recognize that 46 is larger than 36 and then must guess how many times 46

will go into 362. If an initial guess of 8 is made and the multiplication8 x 46 = 368 is carried

out, the result is seen to be larger than 362 so that the 8 must be replaced by a 7. This

process of trial and error is simpler for binary division because there are fewer possibilities

in the binary case.

To implement binary division in a digital computer a division algorithm must be

specified. Two different algorithms, called restoring and nonrestoring division, are used.

Restoring division is carried out as follows: In the first step, the divisor is subtracted

from the dividend with their leftmost digits aligned. If the result is positive, a 1 is entered

as the quotient digit corresponding to the rightmost digit of the dividend from which a digit

of the divisor was subtracted. The next rightmost digit of the dividend is appended to the

result, which then becomes the next partial dividend. The divisor is then shifted one place

to the right so that its least significant digit is aligned with the rightmost digit of the partial

dividend, and the process just described is repeated.

If the result of subtracting the divisor from the dividend is negative, a 0 is entered in

the quotient and the divisor is added back to the negative result so as to restore the original

 Sec. 13

dividend. The divisor is then shifted one place to the right, and a subtraction is carried out

again. The process of restoring division is illustrated in the following example at the top of

the next page:

 Divisor = 1 1 1 1 Dividend = 1 1 0 0

q0 q q q q q

0 .1 1 0 0 1

1 1 1 1 \r(1 1 0 0 .0 0 0 0

 0)

Subtract

Negative result

q0 = 0

 1 1 1 1

0 0 1 1

Restore +1 1 1 1

 1 1 0 0 0

Subtract 1 1 1 1

Positive result q = 1 1 0 0 1 0

Subtract 1 1 1 1

Positive result q= 1 0 0 0 1 1 0

Subtract

Negative result

Restore

q= 0

 1 1 1 1

 1 0 0 1

+ 1 1 1 1

 0 1 1 0 0

Subtract

Negative result

Restore

q= 0

 1 1 1 1

 0 0 1 1

 + 1 1 1 1

 1 1 0 0 0

Subtract 1 1 1 1

Positive result q= 1 1 0 0 1 (remainder)

In nonrestoring division, the step of adding the divisor to a negative partial dividend

is omitted, and instead the shifted divisor is added to the negative partial divi- dend. This

step of adding the shifted divisor replaces the two steps of adding the divi- sor and then

subtracting the shifted divisor. This can be justified as follows: If X rep- resents the negative

partial dividend and Y the divisor, then 1/2Y represents the divi- sor shifted one place to

the right. Adding the divisor and then subtracting the shifted divisor yields X + Y 1/2Y =

X + 1/2Y , while adding the shifted divisor yields the same result, X + 1/2Y . The steps

which occur in using nonrestoring division to divide 1100 by 1111 are shown in the

following example at the top of the next page:

 14 Number Systems and Codes Chap. 1

 1.2 Binary Arithmetic

Divisor = 1 1 1 1 Dividend = 1 1 0 0

q0 q q qqq 

 0 .1 1 0 0 1

 1 1 1 1 \r(1 1 0 0 .0 0 0 0 0)

Subtract 1 1 1 1

Negative result q0 = 0 0 0 1 1 0

Shift and add + 1 1 1 1

Positive result q = 1 + 1 0 0 1 0

Shift and subtract  1 1 1 1

Positive result q= 1 + 0 0 1 1 0

Shift and subtract  1 1 1 1

Negative result q= 0      

Shift and add  1 1 1 1

Negative result q= 0 0 0 1 1 0

 Shift and add + 1 1 1 1

 Positive result q= 1 + 1 0 0 1 (remainder)



An important technique for improving the performance of digital arithmetic cir-

cuitry is the use of more sophisticated algorithms for the basic arithmetic operations. A

discussion of these methods is beyond the scope of this book. The interested reader is

referred to [Waser 82], [Hwang 78], or Chapter 2 and Section 8.1 in [Gschwind 75] for

more details on arithmetic.

 BINARY CODES

The binary number system has many advantages and is widely used in digital systems.

However, there are times when binary numbers are not appropriate. Since we think much

more readily in terms of decimal numbers than binary numbers, facilities are usually

provided so that data can be entered into the system in decimal form, the con- version to

binary being performed automatically inside the system. In fact, many com- puters have

been designed which work entirely with decimal numbers. For this to be possible, a scheme

for representing each of the 10 decimal digits as a sequence of bi- nary digits must be used.

1.3-1 Binary-Coded-Decimal Numbers

To represent 10 decimal digits, it is necessary to use at least 4 binary digits, since

there are 24 , or 16, different combinations of 4 binary digits but only 23, or 8, different

combinations of 3 binary digits. If 4 binary digits, or bits, are used and only one

combination of bits is used to represent each decimal digit, there will be six unused or

 Sec. 15

invalid code words. In general, any arbitrary assignment of combinations of bits to digits

can be used so that there are 16!/6! or approximately 2.9  1010

TABLE 1.3-1 Some common 4-bit decimal codes

Decimal

digit
8 b3 4

b2
2 b1 1

b0
8 4 -2 -1 2 4 2 1 Excess-3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 1

3 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 0
4 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1
5 0 1 0 1 1 0 1 1 1 0 1 1 1 0 0 0

6 0 1 1 0 1 0 1 0 1 1 0 0 1 0 0 1
7 0 1 1 1 1 0 0 1 1 1 0 1 1 0 1 0

8 1 0 0 0 1 0 0 0 1 1 1 0 1 0 1 1
9 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0

possible codes. Only a few of these codes have ever been used in any system, since the

arithmetic operations are very difficult in almost all of the possible codes. Several of the

more common 4-bit decimal codes are shown in Table 1.3-1.

The 8,4,2,1 code is obtained by taking the first 10 binary numbers and assigning them

to the corresponding decimal digits. This code is an example of a weighted code, since the

decimal digits can be determined from the binary digits by forming the sum d = 8b3 + 4b2

+ 2b1 + b0 . The coefficients 8, 4, 2, 1 are known as the code weights. The number 462

would be represented as 0100 0110 0010 in the 8,4,2,1 code. It has been shown in [White

53] that there are only 17 different sets of weights possible for a positively weighted code:

(3,3,3,1), (4,2,2,1), (4,3,1,1), (5,2,1,1), (4,3,2,1), (4,4,2,1), (5,2,2,1), (5,3,1,1), (5,3,2,1),

(5,4,2,1), (6,2,2,1), (6,3,1,1), (6,3,2,1), (6,4,2,1), (7,3,2,1), (7,4,2,1), (8,4,2,1).

It is also possible to have a weighted code in which some of the weights are nega-

tive, as in the 8,4,2,1 code shown in Table 1.3-1. This code has the useful property of

being self-complementing: if a code word is formed by complementing each bit

individually (changing 1's to 0's and 0's to 1's), then this new code word represents the 9's

complement of the digit to which the original code word corresponds. For example, 0101 '

represents denotes the 3 in complement of the 8,4,2,1 code,bi , then a and 1010code is

represents self-complementing if, 6 in this code.

 In general, if bi ' ' ' '

for any code word b3b2b1b0 representing a digit di , the code word
b

3
b

2
b

1
b

0 represents 9 di.

The 2,4,2,1 code of Table 1.3-1 is an example of a self-complementing code having all

positive weights, and the excess-3 code is an example of a code which is self-

complementing but not weighted. The excess-3 code is obtained from the 8,4,2,1 code by

adding (using binary arithmetic) 0011 (or 3) to each 8,4,2,1 code word to obtain the

corresponding excess-3 code word.

Although 4 bits are sufficient for representing the decimal digits, it is sometimes

expedient to use more than 4 bits in order to achieve arithmetic simplicity or ease in er- ror

detection. The 2-out-of-5 code shown in Table 1.3-2 has the property that each code word

has exactly two 1's. A single error which complements 1 of the bits will

 16 Number Systems and Codes Chap. 1

 1.3 Binary Codes

TABLE 1.3-2 Some decimal codes using more than 4 bits.

Decimal

digit

2-out-of-5
Biquinary

5043210

0 00011 0100001

1 00101 0100010
2 00110 0100100
3 01001 0101000
4 01010 0110000
5 01100 1000001
6 10001 1000010
7 10010 1000100
8 10100 1001000
9 11000 1010000

always produce an invalid code word and is therefore easily detected. This is an un-

weighted code. The biquinary code shown in Table 1.3-2 is a weighted code in which 2 of

the bits specify whether the digit is in the range 0 to 4 or the range 5 to 9 and the other 5

bits identify where in the range the digit occurs.

 GEOMETRIC REPRESENTATION OF BINARY NUMBERS

An n-bit binary number can be represented by what is called a point in n- space. To

see just what is meant by this, consider the set of 1-bit binary numbers, that is, 0 and 1.

This set can be represented by two points in 1-space, i.e., by two points on a line. Such a

presentation is called a 1-cube and is shown in Fig.1.4-1b.

(A 0-cube is a single point in 0-space.)

Now consider the set of 2-bit binary numbers, that is, 00, 01, 10, 11 (or, deci- mally,

0, 1, 2, 3). This set can be represented by four points (also called vertices, or nodes) in 2-

space. This representation is called a 2-cube and is shown in Fig.1.4-1c. Note that this

figure can be obtained by projecting the 1-cube (i.e., the horizontal line with two points)

downward and by prefixing a 0 to 0 and 1 on the original 1-cube and a 1 to 0 and 1 on the

projected 1-cube. A similar projection procedure can be followed in obtaining any next-

higher-dimensional figure. For example, the representation for the

Figure 1.4-1 n-Cubes for n = 0, 1, 2, 3: (a)

0-cube; (b) 1-cube; (c) 2- cube; (d) 3-cube.

 Sec. 1.4 Geometric Representation of Binary Numbers 17

set of 3-bit binary numbers is obtained by projecting the 2-cube representation of Fig.1.4-

1c. A 0 is prefixed to the bits on the original 2-cube, and a 1 is prefixed to the bits on the

projection of the 2-cube. Thus, the 3-bit representation, or 3-cube, is shown in Fig. 1.4-1d.

A more formal statement for the projection method of defining an n-cube is as

follows:

1. A 0-cube is a single point with no designation.

2. An n-cube is formed by projecting an (n)-cube. A 0 is prefixed to the desig-

nations of the points of the original (n)-cube, and a 1 is prefixed to the desig-

nations of the points of the projected (n)-cube.

There are 2n points in an n-cube. A p-subcube of an n-cube. (p < n) is de- fined as a

collection of any 2p
 points which have exactly (n p) corresponding bits all the same. For

example, the points 100, 101, 000, and 001 in the 3-cube (Fig.1.4-1d) form a 2-subcube,

since there are 22 = 4 total points and 3 2 = 1 of the bits (the sec-

ondp-subcubes) is the sam in ane fo n-rcube all fou, sincr pointse ther.e arIne general,(Cn

) = there (n!/(aren  p()!n!2p!)n
 (pnumber) /[(n p of)!p ways!] different of se-

np

lecting n things taken n p at a time) ways in which n p of the bits may be the same, and

there are 2n p
 combinations which these bits may take on. For example, there are (3!22

)/(2!1!) = 12 1-subcubes (line segments) in a 3-cube, and there are (3!21)/(1!2!) = 6 2-

subcubes ("squares") in a 3-cube.

Besides the form shown in Fig.1.4-1, there are two other methods of drawing an n-

cube which are frequently used. The first of these is shown in Fig.1.4-2 for the 3- and 4-

cubes. It is seen that these still agree with the projection scheme and are merely a particular

way of drawing the cubes. The lines which are dotted are usually omitted for convenience

in drawing.

If in the representation of Fig.1.4-2 we replace each dot by a square area, we have

what is known as an n-cube map. This representation is shown for the 3- and 4- cubes in

Fig. 1.4-3. Maps will be of considerable use to us later. Notice that the appropriate entry

for each cell of the maps of Fig.1.4-3 can be determined from the corresponding row and

column labels.

It is sometimes convenient to represent the points of an n-cube by the decimal

equivalents of their binary designations. For example, Fig.1.4-4 shows the 3- and 4- cube

maps represented this way. It is of interest to note that, if a point has the decimal equivalent

Ni in an n-cube, in an (n + 1)-cube this point and its projection (as defined) become Ni and

Ni + 2n
 .

Figure 1.4-2 Alternative representa- tions: (a)

3-cube; (b) 4-cube.

Figure 1.4-3 n-Cube maps for n = 3 (a) and n = 4

(b).

1.4-1 Distance

A concept which will be of later use is that of the distance between two points on an n-

cube. Briefly, the distance between two points on an n-cube is simply the number of

coordinates (bit positions) in which the binary representations of the two points differ. This

is also called the Hamming distance. For example, 10110 and 01101 differ in all but

the third coordinate (from left or right). Since the points differ in four coordi- nates, the

distance between them is 4. A more formal definition is as follows: First, define the mod 2

sum of two bits, a  b, by

 0  0 = 0 1  0 = 1

 0  1 = 1 1  1 = 0

That is, the sum is 0 if the 2 bits are alike, and it is 1 if the 2 bits are different. Now consider

the binary representations of two points, Pi = (an- an2 …a 0)) and Pj = (bn1 bn2

…b0)), on the n-cube. The mod 2 sum of these two points is defined as

Pk = Pi  Pj = (an  bn1 , an2  bn2 , … a0  b0)

This sum Pk is the binary representation of another point on the n-cube. The number of 1's

in the binary representation Pi is defined as the weight of Pi and is given the sym- bol |Pi

|. Then the distance (or metric) between two points is defined as

D(Pi , Pj) = | Pi  Pj |

The distance function satisfies the following three properties:

 D(Pi , Pj) = 0 if and only if Pi = Pj

D(Pi , Pj) = D(Pj , Pi ,) > 0 if Pi =/ Pj D(Pi , Pj) + D(Pj , Pk) >

D(Pi , Pk) Triangle inequality

 Sec. 1.4 Geometric Representation of Binary Numbers 19

Figure 1.4-4 Decimal labels in n-cube maps: (a)

3-cube map; (b) 4-cube map.

 16 Number Systems and Codes Chap. 1

To return to the more intuitive approach, since two adjacent points (connected by a

single line segment) on an n-cube form a 1-subcube, they differ in exactly one coordi- nate

and thus are distance 1 apart. We see then that, to any two points which are dis- tance D

apart, there corresponds a path of D connected line segments on the n-cube joining the two

points. Furthermore, there will be more than one path of length D con- necting the two

points (for D > 1 and n > 2), but there will be no path shorter than length D connecting the

two points. A given shortest path connecting the two points, thus, cannot intersect itself,

and D + 1 nodes (including the end points) will occur on the path.

1.4-2 Unit-distance Codes

In terms of the geometric picture, a code is simply the association of the decimal inte- gers

(0,1,2,...) with the points on an n-cube. There are two types of codes which are best

described in terms of their geometric properties. These are the so-called unit- distance

codes and error-detecting and error-correcting codes.

A unit-distance code is simply the association of the decimal integers (0,1,2,...) with

the points on a connected path in the n-cube such that the distance is 1 between the point

corresponding to any integer i and the point corresponding to integer i + 1 (see Fig. 1.4-5).

That is, if Pi is the binary-code word for decimal integer i, then we must have

 D(Pi , Pi + 1) = 1 i = 0, 1, 2, …

Unit-distance codes are used in devices for converting analog or continuous sig- nals

such as voltages or shaft rotations into binary numbers which represent the magni- tude of

the signal. Such a device is called an analog-digital converter. In any such device there

must be boundaries between successive digits, and it is always possible for there to be some

misalignment among the different bit positions at such a boundary. For example, if the

seventh position is represented by 0111 and the eighth position by 1000, misalignment

could cause signals corresponding to 1111 to be gen- erated at the boundary between 7 and

8. If binary numbers were used for such a de- vice, large errors could thus occur. By using

a unit-distance code in which adjacent positions differ only in 1 bit, the error due to

misalignment can be eliminated.

The highest integer to be encoded may or may not be required to be distance 1 from

the code word for 0. If it is distance 1, then the path is closed. Of particular interest is the

case of a closed nonintersecting path which goes through all 2n points of the n-cube. In

graph theory such a path is known as a (closed) Hamilton line. Any unitdistance code

associated with such a path is sometimes called a Gray code, although this term is usually

reserved for a particular one of these codes. To avoid

Figure 1.4-5 Path on a 3-cube

corresponding to a unit-distance code.

TABLE 1.4-1 Unit-dis- tance

code of Fig. 1.4-5

0 000
1 001

2 011
3 010
4 110

5 111
6 101

7 100

confusing terminology, we shall refer to a unit-distance code which corresponds to a closed

Hamilton line as a closed n code. This is a unit-distance code containing 2n code words in

which the code word for the largest integer (2n
  1) is distance 1 from the code word for

the least integer (0). An open n code is similar except that the code words for the least and

largest integer, respectively, are not distance 1 apart.

The most useful unit distance code is the Gray code which is shown in Table 1.4- 2.

The attractive feature of this code is the simplicity of the algorithm for translating from the

binary number system into the Gray code. This algorithm is described by the expression

 gi = bi  bi + 1

TABLE 1.4-2 The Gray code

Decimal

Binary

Gray

b3 b2 b1 b0 g3

g2 g1 g0

0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1

 Sec. 1.4 Geometric Representation of Binary Numbers 21

2 0 0 1 0 0 0 1 1

3 0 0 1 1 0 0 1 0

4 0 1 0 0 0 1 1 0

5 0 1 0 1 0 1 1 1

6 0 1 1 0 0 1 0 1

7 0 1 1 1 0 1 0 0

8 1 0 0 0 1 1 0 0

9 1 0 0 1 1 1 0 1

10 1 0 1 0 1 1 1 1

11 1 0 1 1 1 1 1 0

12 1 1 0 0 1 0 1 0

13 1 1 0 1 1 0 1 1

14 1 1 1 0 1 0 0 1

15 1 1 1 1 1 0 0 0

 18 Number Systems and Codes Chap. 1

Thus, the Gray code word corresponding to 1100 in binary is formed as follows: g0

= b0  b1 = 0  0 = 0 g1 = b1  b2 = 0  1 = 1 g2 = b2  b3 = 1 

1 = 0

 g3 = b3  b4 = b3 = 1 b4 understood to be 0

1.4-3 Symmetries of the n-Cube

A symmetry of the n-cube is defined to be any one-to-one translation of the binary point

representations on the n-cube which leaves all pairwise distances the same. If we consider

the set of binary numbers, we see that there are only two basic translation schemes which

leave pairwise distances the same. (1) The bits of one coordinate may be interchanged with

the bits of another coordinate in all code words. (2) The bits of one coordinate may be

complemented (i.e., change 1's to 0's and 0's to 1's) in all code words. Since there are n!

translation schemes possible using (1), and since there are 2n ways in which coordinates

may be complemented, there are 2n translation schemes possible using (2). Thus, in all

there are 2n(n!) symmetries of the n-cube. This means that for any n-bit code there are 2 n

(n!) 1 rather trivial modifications of the original code (in fact, some of these may result

in the original code) which can be obtained by interchanging and complementing

coordinates. The pairwise distances are the same in all these codes.

It is sometimes desired to ennumerate the different types of a class of codes. Two codes are

said to be of the same type if a symmetry of the n-cube translates one code into the other

(i.e., by interchanging and complementing coordinates). As an example, we might ask:

What are the types of closed n codes? It turns out that for n < 4 there is just one type, and

this is the type of the conventional Gray code. For n = 4, there are nine types. Rather than

specify a particular code of each type, we can list these types by specifying the sequence

of coordinate changes for a closed path of that type. On the as- sumption that the

coordinates are numbered (3210), the nine types are shown in Table 1.4-3.

TABLE 1.4-3 Nine different types of unit-distance 4-bit code

Type

1 (Gray) 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 3
2 1 0 1 3 1 0 1 2 0 1 0 3 0 1 0 2

3 1 0 1 3 0 1 0 2 1 0 1 3 0 1 0 2
4 1 0 1 3 2 3 1 0 1 3 1 0 2 0 1 3
5 1 0 1 3 2 0 1 3 1 0 1 3 2 0 1 3

6 1 0 1 3 2 3 1 3 2 0 1 2 1 3 1 2
7 1 0 1 3 2 0 2 1 0 2 0 3 0 1 0 2
8 1 0 1 3 2 1 2 0 1 2 1 3 0 1 0 2

9 1 0 1 3 2 3 1 0 3 0 2 0 1 2 3 2

 ERROR-DETECTING AND ERROR-CORRECTING CODES

Special features are included in many digital systems for the purpose of increasing system

reliability. In some cases circuits are included which indicate when an error has occurred—

error detection—and perhaps provide some information as to where the error is—error

diagnosis. Sometimes it is more appropriate to provide error correction: circuits not only

detect a malfunction but act to automatically correct the erroneous indications caused by

it. One technique used to improve reliability is to build two duplicate systems and then to

run them in parallel, continually comparing the outputs of the two systems, [Burks 62].

When a mismatch is detected, actions are initiated to determine the source of the error and

to correct it, [Keister 64]. Another approach uses three copies of each system module and

relies on voter elements to select the correct output in case one of the three copies has a

different output from the other two, ([von Neumann 56], [Lyons 62]). This technique is

called triple modular redundancy (TMR). Such costly designs are appropriate either when

the components are not sufficiently reliable [Burks 62] or in systems where reliability is

very important as in real-time applications such as telephony, [Keister 64], airline

reservations, [Perry 61], or space vehicles, [Dickinson 64].

In many other applications where such massive redundancy is not justified it is still

important to introduce some (less costly) techniques to obtain some improvement in

reliability. A very basic and common practice is to introduce some redundancy in encoding

the information manipulated in the system. For example, when the 2-out-of- 5 code is used

to represent the decimal digits, any error in only one bit is easily detected since if any single

bit is changed the resulting binary word no longer contains exactly two 1's. While it is true

that there are many 2-bit errors which will not be detected by this code, it is possible to

argue that in many situations multiple errors are so much less likely than single errors that

it is reasonable to ignore all but single errors.

Suppose it is assumed that the probability of any single bit being in error is p and

that this probability is independent of the condition of any other bits. Also suppose that p

is very much less than one, (i.e., that the components are very reliable). Then the

 Sec. 1.4 Geometric Representation of Binary Numbers 23

probability of all 5 bits representing one digit being correct is P0 = (1p)5, the

probability of exactly one error is P1 = 5(1p)4p and the probabilty of two errors is P2 =

10(1p)3p2 . Taking the ratio P2/P1= 2p/(1p)  2p/(1+p) << 1, showing that the

probabilty of a double error is much smaller than that of a single error. Arguments such as

this are the basis for the very common emphasis on handling only single errors.

It is possible to easily convert any of the 4-bit decimal codes to single-error-

detecting codes by the addition of a single bit a parity bit as is illustrated for the 8421 code

in Table 1.5-1. The parity bit p is added to each code word so as to make the total number

of 1's in the resultant 5-bit word even; i.e., p = b0  b1  b2  b3 If any one bit is reversed

it will change the overall parity (number of 1's) from even to odd and thus provide an error

indication.

This technique of adding a parity bit to a set of binary words is not peculiar to binary-

coded-decimal schemes but is generally applicable. It is common practice to add a parity

bit to all information recorded on magnetic tapes.

 20 Number Systems and Codes Chap. 1

 TABLE 1.5-1 8421 code with parity bit added

Decimal 8 4 2 1 Parity, digit b3 b2 b1 b0 p

0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 1
3 0 0 1 1 0
4 0 1 0 0 1
5 0 1 0 1 0
6 0 1 1 0 0
7 0 1 1 1 1
8 1 0 0 0 1
9 1 0 0 1 0

The 8421 code with a parity bit added is shown plotted on the 5-cube map of Fig.1.5-

1. Inspection of this figure shows that the minimum distance between any two words is two

as must be true for any single-error-detecting code.

In summary, any single-error-detecting code must have a minimum distance between

any two code words of at least two, and any set of binary words with minimum distance

between words of at least two can be used as a single-error-detecting code. Also the

addition of a parity bit to any set of binary words will guarantee that the minimum distance

between any two words is at least two.

Figure 1.5-1 Five-cube map for the 8421 BCD code

with parity bit p

1.5-1 Single-Error-Correcting Codes

A parity check over all the bits of a binary word provides an indication if one of the bits is

reversed; however, it provides no information about which bit was changed  all bits enter

into the parity check in the same manner. If it is desired to use parity checks to not only

detect an altered bit but also to identify the altered bit, it is necessary to resort to several

parity checks  each checking a different set of bits in the word. For example, consider the

situation in Table 1.5-2 in which there are three bits, M1, M2, and M3, which are to be used

to represent eight items of information and there are two parity check bits C1 and C2. The

information bits, Mi, are often called message bits and the Ci bits check bits. As indicated

in the table C1 is obtained as a parity check over

 Sec. 1.5 Error-Detecting and Error-Correcting Codes 21

 TABLE 1.5-2 A parity check table

 25

M1 M2 M3 C1 C2













C1 = M1  M3, C2 = M2  M3

bits M1 and M3, while C2 checks bits M2 and M3.

At first glance it might seem that this scheme might result in a single-error-correct-

ing code since an error in M3 alters both parity checks while an error in M1 or M2 each alters

a distinct single parity check. This reasoning overlooks the fact that it is possible to have

an error in a check bit as well as an error in a message bit. Parity check one could fail as

a result of an error either in message bit M1 or in check bit C1. Thus in this situation it

would not be clear whether M1 should be changed or not. In order to obtain a true single-

error-correcting code it is necessary to add an additional check bit as in Table 1.5-3.

TABLE 1.5-3 Eight-word single-error-correcting code: (a) Parity check table; (b)

parity check equations; (c) Single-error-correcting code

 (a) (b)

C1 = M1  M3

C2 = M2  M3

C3 = M1  M2

 (c)

` M1 M2 M3 C1 C2 C3 a 0 0 0 0 0 0 b 0 0 1 1 1 0 c

0 1 0 0 1 1 d 0 1 1 1 0 1 e 1 0 0 1 0 1 f 1 0 1 0 1

1
g 1 1 0 1 1 0 h 1 1 1 0 0 0

Inspection of the parity check table in Table 1.5-3a shows that an error in any one of

the check bits will cause exactly one parity check violation while an error in any one of the

message bits will cause violations of a distinct pair of parity checks. Thus it is possible to

uniquely identify any single error. The code words of Table 1.5-3c are shown plotted on

the 6-cube map of Fig. 1.5-2. Each code word is indicated by the cor-

 22 Number Systems and Codes Chap. 1

M1 M2 M3 C1 C2 C3












 

 

responding letter and all cells distance 1 away from a code word are marked with an  . The

fact that no cell has more than one  shows that no cell is distance one away from two code

words. Since a single error changes a code word into a new word distance one away and

each of such words is distance one away from only one code word it is possible to correct

all single errors. A necessary consequence of the fact that no word is distance one away

from more than one code word is the fact that the minimum distance between any pair of

code words is three. In fact the necessary and sufficient conditions for any set of binary

words to be a single-error-correcting code is that the minimum distance between any pair

of words be three.

A single error correcting code can be obtained by any procedure which results in a

set of words which are minimum distance three apart. The procedure illustrated in Table

1.5-3 is due to [Hamming 50] and due to its systematic nature is almost univer- sally used

for single-error-codes.

With three parity check bits it is possible to obtain a single-error-correcting code of

more than eight code words. In fact up to sixteen code words can be obtained. The parity

check table for a code with three check bits, C1, C2, and C4, and four message bits M3 , M5,

M6 and M7 is shown in Table 1.5-4. The peculiar numbering of the bits has been adopted to

demonstrate the fact that it is possible to make a correspondence between the bit positions

and the entries of the parity check table. If the blanks in the table are replaced by 0's and

the  's by 1's then each column will be a binary number which is the equivalent of the

subscript on the corresponding code bit. The check bits are placed in the bit positions

corresponding to binary powers since they then enter into only one parity check making

the formation of the parity check equations very straight- forward.

The fact that Table 1.5-4 leads to a single-error-correcting code follows from the fact

that each code bit enters into a unique set of parity checks. In fact, the necessary and

sufficient conditions for a parity check table to correspond to a single-error-correct- ing

code are that each column of the table be distinct (no repeated columns) and that

Figure 1.5-2 Six-cube map for the code of

Table 1.5-3c.

 Sec. 1.5 Error-Detecting and Error-Correcting Codes
TABLE 1.5-4 Parity check table for a single-error-correcting code

with 3 check bits and 4 message bits

 27

C1 C2 M3 C4 M5 M6 M7

 
 









   

C1 = M3  M5  M7

C2 = M3  M6,  M7

C4 = M5  M6,  M7

each column contain at least one entry. It follows from this that with K check bits it is

possible to obtain a single-error-correcting code having at most 2K
  total bits.1 There are

2K
 different columns possible but the empty column must be excluded leaving 2K

 columns.

1.5-2 Double-Error-Detecting Codes

If a code such as that generated by Table 1.5-4 is being used and a double error occurs, a

correction will be carried out but the wrong code word will be produced. For exam- ple,

suppose that bits C1 and C2 were in error, the first two parity checks would be vio- lated

and it would appear as if message bit M3 had been in error. Similarly, errors in bit M3 and

M6 would result in violations of the first and third parity checks,2 and an indication of M5

being in error would be produced. It is possible to add the ability to detect double errors

as well as correct single errors by means of one addition parity check over all the bits. This

is illustrated in Table 1.5-5. Any single error in the resulting code will result in the same

parity check violations as without P and in addition will violate the P parity check. Any

double error will not violate the P parity check but will violate some of the C parity checks

thus providing an indication of the double error.

A code that detects double errors as well as correcting single errors must consist of

binary words having a minimum distance of four. This situation is illustrated by Fig.1.5-3.

Both the single-error codes and the double-error-detecting codes are in use in contemporary

systems [Hsiao 70]. Many more sophisticated error-correcting codes have been studied (

[Peterson 72], [Berlekamp 68]).

1

In Table 1.5-4, K=3, 2K 1=7 and the table does indeed have a total of 7 bits.
2

The

two changes in parity check two would cancel.

 24 Number Systems and Codes Chap. 1

TABLE 1.5-5 Parity check table for a code to detect all double errors and

correct all single errors

 C1 C2 M3 C4 M5 M6 M7 P




 

 









 

 

 













 C1 =M3  M5 M7

 C2 =M3 M6, M7

 C4 =M5 M6, M7

P =C1 C2 M3  C4 M5  M6 M7

Figure 1.5-3 Fragment of an N-cube illustrating the

distance between code words in a double-error-detecting,

single- error-correcting code.

REFERENCES

[BERLEKAMP 68] Berlekamp, E.R., Algebraic Coding Theory, McGraw-Hill Book Company, New York

1968.

[BURKS 62] Burks, A.W., H.H. Goldstine, and J. von Neumann, “Preliminary Discussion of the Logical

Design of an Electronic Computing Instrument,” Datamation, Section 6.5, pp. 39-40, October 1962.

[CHRYSTAL 61] Chrystal, G., Algebra; an Elementary Text-book , pt.I, Dover Publications, Inc., New York,

1961.

[DICKINSON 64] Dickinson, M.M., J.B. Jackson, and G.C. Randa, “Saturn V Launch Vehicle Digital

Computer and Data Adapter,” Proc., AFIPS Fall Joint Computer Conf.,Vol.26, Part 1, pp.501- 516,

1964.

[GSCHWIND 75] Gschwind, H.W., and E.J. McCluskey, Design of Digital Computers, Springer- Verlag,

New York, 1975.

[HAMMING 50] Hamming, R.W., “Error Detecting and Error Correcting Codes,” BSTJ , Vol.29,

pp.147160, April 1950.

[HSIAO 70] Hsiao, M.Y., “A Class of Optimal Minimum Odd-weight-column SEC-DED Codes, IBM J.

Res. and Devel.,Vol.14, No.4, pp.395-401, July 1970.

[HWANG 78] Hwang, K., Computer Arithmetic: Principles, Architecture, and Design, J. Wiley and Sons,

Inc., New York, 1978.

 Chap. 1 References
[KEISTER 64] Keister, W., R.W. Ketchledge and H.E. Vaughan, “No. 1 ESS: System Organization and

Objectives,” Bell Syst. Tech. J,Vol.43, No.5, Sec. 4, pp. 1841-1842, Sept. 1964.

 29

[KNUTH 68] D.E. Knuth, Fundamental Algorithms, Addison-Wesley Publishing Company, Inc., Reading,

Mass., 1968.

[KNUTH 69] D.E. Knuth, Seminumerical Algorithms, Addison-Wesley Publishing Company, Inc.,

Reading, Mass., 1969.

[LYONS 62] Lyons, R.E., and W. Vanderkulk, “The Use of Triple-modular Redundancy to Improve

Computer Reliability,” IBM J. Res. and Devel ., Vol. 6, No. 2, pp. 200-209, 1962.

[PERRY 61] Perry, M.N., and W.R. Plugge, “American Airlines SABRE Electronics Reservations System,”

Proc., 9th Western Joint Computer Conf., Los Angeles, CA, pp. 593, May 1961.

[PETERSON 72] Peterson, W.W., and E.J. Weldon, Jr., Error-correctingCodes, The MIT Press, Cambridge,

MA., 2nd Ed., John Wiley & Sons, Inc., New York, 1972.

[VON NEUMANN 56] von Neumann, J., “Probabilistic Logics and the Synthesis of Reliable Organisms

from Unreliable Components,” Automata Studies, C.E. Shannon and J. McCarthy, eds., Annals of Math

Studies No. 34, pp. 43-98, Princeton University Press, 1956.

[WASER 82] Waser, S., and M.J. Flynn, Introduction to Arithmetic for Digital Systems Designers, Holt,

Rinehart and Winston, New York, 1982.

[WHITE 53] White, G.S., “Coded Decimal Number Systems for Digital Computers,” Proc., IRE, Vol.41,

No.10, pp. 1450-1452, October, 1953.

PROBLEMS

 Convert:
(a) (523.1)10 to base 8 (e) (1100.11)2 to base 7

(b) (523.1)10 to base 2 (f) (101.11)2 to base 4 (c) (101.11)2 to base 8 (g) (321.40)6

to base 7

 (d) (101.11)2 to base 10 (h) (25/3) 10 to base 2

 In base 10 the highest number which can be obtained by multiplying together two single digits

is 9  9 = 81, which can be expressed with two digits. What is the maximum number of digits

required to express the product of two single digits in an arbitrary base-b system?

 Given that (79)10 = (142)b , determine the value of b.

 Given that (301)b = (I2)b , where I is an integer in base b and I2 is its square, determine the value

of b.

 Let

N* = (n4 n3n2n1n0)* = 2 3 4 5 n4 + 3 4 5 n3 + 4 5 n2 + 5 n1 + n0

= 120n4 + 60n3 + 20n2 + 5n1 + n0 where

0 < n0 < 4 0 < n1 < 3 0 < n2 < 2 0 < n3 < 1 0 < n4 < 1 with all the ni positive

integers.

(a) Convert (11111)* to base 10.

(b) Convert (11234)* to base 10.

(c) Convert (97)10 to its equivalent (n4 n3n2n1n0)* .

(d) Which decimal numbers can be expressed in the form (n4 n3n2n1n0)* ?

 26 Number Systems and Codes Chap. 1

 In order to write a number in base 16 the following symbols will be used for the numbers

from 10 to 15:
 10 t 12 w 14 u

(a) Convert 11 e 13 h 15 f (4tu)16 to base 10.

(b) Convert (2tfu)16 to base 2 directly (without first converting to base 10).

 Convert (1222)3 to base 5, (N)5 , using only binary arithmetic:

(a) Convert (1222)3 to (N)2 . (b) Convert (N)2 to (N)5 .

 Perform the following binary-arithmetic operations: (a) 11.10

+ 10.11 + 111.00 + 110.11 + 001.01 = ?

(b) 111.00  011.11 = ?

(c) 011.11 111.00 = ?

(d) 111.001  1001.1 = ?

(e) 101011.1 + 1101.11 = ?

 Form the radix complement and the diminished radix complement for each of the

following numbers: (a) (.10111)2

(b) (.110011)2

(c) (0.5231)10

(d) (0.32499)10

(e) (0.3214)6

(f) (032456)7

(a) Write out the following weighted decimal codes:

(i) 7, 4, 2,  1

(ii) 8, 4,  2,  1

(iii) 4, 4, 1,  2

(iv) 7, 5, 3,  6

(v) 8, 7,  4,  2

(b) Which codes of part (a) are self-complementing?

(c) If a weighted binary-coded-decimal code is self-complementing, what necessary

condition is placed on the sum of the weights?

(d) Is the condition of part (c) sufficient to guarantee the self-complementing property?

Give an example to justify your answer.

 Write out the following weighted decimal codes: (7, 3, 1,  2), (8, 4,  3 ,  2), (6, 2,

2, 1). Which of these, if any, are self-complementing?

 Sketch a 4-cube, and label the points. List the points in the p-subcubes for p=2,3.

 Compute all the pairwise distances for the points in a 3-cube. Arrange these in a matrix form

where the rows and columns are numbered 0,1,...,7, corresponding to the points of the 3-

cube. The 0-, 1-, and 2-cube pairwise distances are given by submatrices of this matrix.

By observing the relationship between these matrices, what is a scheme for going from

the n-cube pairwise-distance matrix to the (n+1)- cube pairwise-distance matrix?

 What is a scheme for going from the Gray code to the ordinary binary code using addition mod

2 only?

 For the Gray code, a weighting scheme exists in which the weights associated with the bits are

constant except for sign.The signs alternate with the occurrence of 1's,

 Chap. 1 Problems

 31

left to right. What is the weighting scheme?

 List the symmetries of the 2-cube.

 Write out a typical type-6 closed-unit-distance 4 code (Table 1.4-3).

 Write out two open unit-distance 4 codes of different type (i.e., one is not a symmetry of the other).

 Write out a set of six code words which have and single-error-correcting property.

 A closed error-detecting unit-distance code is defined as follows: There are k (k<2n
) ordered binary

n-bit code words with the property that changing a single bit in any word will change the

original word into either its predecessor or its successor in the list (the first word is considered

the successor for the last word) or into some other n-bit word not in the code. Changing a

single bit cannot transform a code word into any code word other than its predecessor or

successor. List the code word for such a code with k = 6, n = 3. Is there more than one

symmetry type of code for these specifications? Why?

 28 Number Systems and Codes Chap. 1

 CHAPTER 2 PREVIEW

• Counting in Decimal • Electronic

 and Binary Translators

• Place Value • Hexadecimal

Numbers

• Binary to Decimal

 Conversion • Octal Numbers

• Decimal to Binary Conversion

COUNTING IN

DECIMAL AND BINARY

• Number System -

Code using symbols that refer to

a number of items.

• Decimal Number System - Uses ten

symbols (base 10 system)

• Binary System -

Uses two symbols (base 2 system)

PLACE VALUE

• Numeric value of symbols in different positions.

• Example - Place value in binary system:

 Place Value 8s 4s 2s 1s

 Binary Yes Yes No No

 Number 1 1 0 0

RESULT: Binary 1 00 = decimal 8 + 4 + 0 + 0 = decimal 12

BINARY TO DECIMAL

CONVERSION

Convert Binary Number 110011 to

a Decimal Number:

Binary

1 1 0 0 1 1

 Decimal 32 + 16 + 0 + 0 + 2 + 1 =

Convert the following binary

numbers into decimal numbers:

 Binary 1001 = 9

 Binary 1 1 = 15

51

 Binary 0010 = 2

DECIMAL TO BINARY

CONVERSION

Divide by 2 Process

 Decimal # 13 ÷ 2 = 6 remainder 1

6 ÷ 2 = 3 remainder 0

3 ÷ 2 = 1 remainder 1

1 ÷ 2 = 0 remainder 1

1 1 0 1

Convert the following decimal

numbers into binary:

 Decimal 1 = 101

 Decimal 4 = 0100

Decimal 17 = 10001

ELECTRONIC

TRANSLATORS

Devices that convert from decimal to

binary numbers and from binary to

decimal numbers.

Encoders - translates from decimal

to binary

Decoders - translates from binary to

decimal

ELECTRONIC ENCODER -

DECIMAL TO BINARY

Binary output Decimal input

Decimal

to

Binary

Encoder

00 1010

01 011

• Encoders are available in IC form.

• This encoder translates from decimal

input to binary (BCD) output.

5

7

0

3

ELECTRONIC DECODING:

BINARY TO DECIMAL
 Binary input Decimal output

0 01 0 1 10

Binary-to- 7-

Segment Decoder/

Driver

• Electronic decoders are available in IC form.

• This decoder translates from binary to decimal.

• Decimals are shown on an 7-segment LED display.

• This decoder also drives the 7-segment display.

HEXADECIMAL NUMBER SYSTEM

Uses 16 symbols -Base 16 System

0-9, A, B, C, D, E, F

 Decimal Binary Hexadecimal

 1 0001 1

9 1001 9

10 1010 A

15 1 1 F

16 10000 10

HEXADECIMAL AND

BINARY CONVERSIONS

• Hexadecimal to Binary Conversion

 Hexadecimal C 3

 Binary 1100 0011

• Binary to Hexadecimal Conversion

 Binary 1 10 1010

 Hexadecimal E A

 DECIMAL TO HEXADECIMAL

CONVERSION

Divide by 16 Process

 Decimal # 47 ÷ 16 = 2 remainder 15

2 ÷ 16 = 0 remainder 2

2 F

 HEXADECIMAL TO DECIMAL

CONVERSION

Convert hexadecimal number

2DB to a decimal number

 Place Value 256s 16s 1s

 Hexadecimal 2 D B

 (256 x 2) (16 x 13) (1 x 11)

 Decimal 512 + 208 + 1 =

TEST

Convert Hexadecimal number A6 to Binary

 A6 = 1010 0110 (Binary)

731

Convert Hexadecimal number 16 to Decimal

 16 =

22 (Decimal)

Convert Decimal 63 to Hexadecimal

63 = 3F (Hexadecimal)

OCTAL NUMBERS

Uses 8 symbols -Base 8 System

0, 1, 2, 3, 4, 5, 6, 7

 Decimal Binary Octal

 1 001 1

6 1 0 6

7 1 1 7

8 001 000 10

9 001 001 1

PRACTICAL SUGGESTION ON

NUMBER SYSTEM CONVERSIONS

• Use a scientific calculator

• Most scientific calculators have DEC, BIN,

OCT, and HEX modes and can either convert

between codes or perform arithmetic in

different number systems.

• Most scientific calculators also have other

functions that are valuable in digital

electronics such as AND, OR, NOT, XOR, and

XNOR logic functions.

ECE

–

Digital

Electronics

Basic

Logic

Operations,

Boolean

Expressions,

and

Boolean

Algebra

2

Basic

Logic

Operations

ECE Digital Electronics

 - Digital Electronics 3

⚫
 AND

⚫
 OR

Basic

Logic

Operations

⚫
 NOT

(Complement)

⚫
 Order

of

Precedence

1.

NOT

2.

AND

3.

OR



can be

modified

using

parenthesis 

ECE

 ECE - 4

Basic

Logic

Operations

Digital Electronics

 ECE - Digital Electronics 5

Basic

Logic

Operations

 ECE - Digital Electronics 6

h

Additional

Logic

Operations

⚫
 NAND



F

=

(A

.

B)'

⚫
 NOR



F

=

(A

+

B)'

⚫
 XOR



Output

is

1

iff

either

input

is

1 ,

but

not

both. 

⚫
 XNOR

(aka.

Equivalence)



Output

is 1

iff

bot

are

0. 

inputs

are

1

or

both

inputs

 ECE - Digital Electronics 7

Additional

Logic

Operations

NAND

XOR

NOR
 denotes inversion XNOR

 ECE - Digital Electronics 8

c

c

Additional

Logic

Operations

Exer

Derive the Truth ta

following

logi

ise:

le

for

each

of

the

operations:

1.

2 - input NAND

2.

2 - input NOR

 ECE - Digital Electronics 9

c

c

Additional

Logic

Operations

Exer

Derive the Truth ta

following

logi

ise:

le

for

each

of

the

operations:

1.

2 - input

XOR

2.

2 - input

XNOR

 ECE - Digital Electronics 10

T

Truth

ables

 ECE - Digital Electronics 11

Truth T ables
⚫ Used to describe the functional behavior of a Boolean

expression and/or Logic circuit.

⚫ Each row in the truth table represents a
unique combination of the input variables.

  For n input variables there are 2n rows.

⚫ The output of the logic function is defined for each
row.

 ECE - Digital Electronics 12

⚫ Each row is assigned a numerical value, with the rows
listed in ascending order.

⚫ The order of the input variables defined in the logic
function is important.

 ECE - Digital Electronics 13

3 -

input

Truth

Table

F(A,B,C)

=

Boolean

expression

 ECE - Digital Electronics 14

4 -

input

Truth

Table

F(A,B,C,D)

=

Boolean

expression

 ECE - Digital Electronics 15

x

Boolean

E

pressions

 ECE - Digital Electronics 16

C

B

Boolean

Expressions

⚫
 Boolean

expressions

are composed

of

⚫ Literals

–

variables

⚫ Logical

operations

⚫
 Examples

⚫ F

=

A.B'.C

+

A'.B.

and their complements

'

+

A.B.C

+

A'.B'.C'

literals

logic
 operations

⚫ F =

+ (A+B+C').(A'

'+C).(A+B+C)

⚫ F

=

A.B'.C'

+

A.(B.C'

+

B'.C)

 ECE - Digital Electronics 17

m

Boolean

Expressions

⚫
 Boolean

expressions

are

realized

using

a

network

(or combination) of

logic

gates.



Each logic

gate

i

operations in

the 

plements

one

of

the logic

Boolean

expression



Each

input

to

a

lo

the

literals

in

the 

A

B

literals

ic

gate

represents

one

of

oolean

expression

logic
 operations

f

 ECE - Digital Electronics 18

 Boolean Expressions

 ⚫ Boolean expressions are evaluated by

 ⚫ Substituting a 0 or 1 for each literal

 ⚫ Calculating the logical value of the expression

⚫ A Truth Table specifies the value of the
Boolean expression for every combination of
the variables in the Boolean expression.

⚫ For an n-variable Boolean expression, the truth
table has 2n rows (one for each combination).

 ECE - Digital Electronics 19

 ECE - Digital Electronics 20

x

m

C

Boolean

E

Exa

Evaluate

the

following

for

all

combination

of

pressions

ple:

Boolean

expression,

inputs,

using

a

Truth

table.

F(A,B,C)

=

A'.B'.

+

A.B'.C'

+

A.C

 ECE - Digital Electronics 21

x

o

o

Boolean

E

⚫
 Two

Boolean

expressi

pressions

ns

are

equivalent

if

they

have

the

same

value for

each

combination of

the

variables in

the Bo



F 1

=

(A

+

B)'



F 2

=

A'.B'

⚫
 How

do

you

prove that

lean

expression.

two

Boolean

expressions

are

equivalent?



Truth

table



Boolean Algebra

 ECE - Digital Electronics 22

x

m

Boolean

E

Exa

pressions

ple:

Using a Truth table, prove that the following

two

Boolean expressions

are equivalent.

F 1

=

(A

+

B)'

F 2

=

A'.B'

 ECE - Digital Electronics 23

Boolean

Algebra

 ECE - Digital Electronics 24

Boolean Algebra
⚫ George Boole developed an algebraic description for

processes involving logical thought and reasoning.

  Became known as Boolean Algebra

⚫ Claude Shannon later dem onstrated that Boolean
Algebra could be used to escribe switching circuits.

 Switching circuits are circuits built from devices that

switch between two states (e.g. 0 and 1).

 Switching Algebra is a special case of Boolean
Algebra in which all v ariables take on just two distinct

values

 ECE - Digital Electronics 25

⚫ Boolean Algebra is a powerful tool for analyzing and
designing logic circuits.

 ECE - Digital Electronics 26

 ECE - Digital Electronics 27

o

A

C

A

Idemp

A

+

F =

ABC

+

F =

AB

Note:

terms

can

also

be

tence

=

A

ABC'

+

ABC

+ ABC'

added

using

this

theorem

A

.

G

=

(A'

+

B +

C').(A

=

A

+

B'

+

C).(A +

B'

+

C)

G

=

(A'

+

B

+

C')

+

(A

+

B'

+

C)

Note:

terms

can

also

be

added

using

this

theorem

 ECE - Digital Electronics 28

A

+

Complement

A

+

'

=

1

F

=

ABC'D

+ ABCD

F =

ABD.(C'

+

C)

F =

ABD

A

.

A'

=

0

G

=

(A

+

B

+

C

+

D).(A

+

B'

+

C

+

D)

G

=

(A +

C

+

G =

A

D)

+

(B

.

B')

C

+

D

 ECE - Digital Electronics 29

 ECE - Digital Electronics 30

Absorption

A

+

AB

=

A

F

 A' = BC

+ A'

F =

A'

) Covering (

A.(A

+

B)

=

A

F = A'.(A' + BC)

F =

A'

G

=

XYZ

+

X Y' Z

+

X'Y'Z'

+

XZ

G

=

X Y Z

+

XZ

+

X'Y'Z'

G

=

XZ

+

X'Y'Z'

H =

D

+

DE

+

DEF

H

=

D

G

=

XZ .(XZ

+

Y

+

Y')

G

=

XZ .(XZ

+

Y)

G

=

XZ

H =

D.(D

+ E

+

EF)

H

=

D

 ECE - Digital Electronics 31

B

X

Simplification

A

+

A'B

F

=

(XY

+

Z) Y'W .(

=

A

+

B

+

Z'V')

+

(XY

+

Z)'

F =

Y'W

+

Z'V'

+

(XY

+

Z)'

A.(A'

+

G =

(X

+

Y) .(

(

G =

X (

+

)

=

A

.

B

+

Y)'

+

WZ ()

)

Y)

.

WZ

 ECE - Digital Electronics 32

c

A

X

Logic

Adjacen

A.B

+

y

(Combining)

.B'

=

A

F

=

(X

+

Y). (W'X'Z)

+

(X

+

Y). W'X'Z)' (

F

=

(

+

Y)

(A

+

B).(A

+

B')

=

A

G

=

(XY

+

X'Z').(XY

+

(X'Z')'

)

G

=

XY

 ECE - Digital Electronics 33

m

x

Boolean

Exa

Algebra

ple:

Using

Boolean

Algebra,

simplify

the

following

Boolean

e

F(A,B,C)

=

A'.B.C

pression.

+

A.B'.C

+

A.B.C

 ECE - Digital Electronics 34

m

x

Boolean

Exa

Algebra

ple:

Using

Boolean

Algebra,

simplify

the

following

Boolean

e

pression.

F(A,B,C) =

(A'+B'+C').(A'+B+C').(A+B'+C')

 ECE - Digital Electronics 35

w

DeMorgan's

Laws

⚫
 Can

be

stated as

follo



The

complement

s:

of

the

product

(AND)

is

the

sum

(OR)

of

the

complements.

⚫ (X.Y)' =

X'

+

Y'



The complement

product

(AND)

of

⚫ + (X

Y)'

=

X'

.

of

the

sum

) OR (

is

the

the

complements.

Y'

⚫
 Easily

generalized

to

n

⚫
 Can

be

proven

using

a

variables.

Truth

table

 ECE - Digital Electronics 36

 ECE - Digital Electronics 37

x

x

DeMorgan's

Theorems

x

1

1
x

1

x

2 x

2

2

(a) x

1
 x

2
 =

x

1
 +

x

2

x

1

1 x

1

x

2 x

2

2

(b) x

1
 +

x

2
 =

 x

1
 x

2

x

x

 ECE - Digital Electronics 38

c

c

Importance

of

Boolean

Algebra

⚫ Boolean

Algebra

is

used

to

expressions.

–

Through application of

discussed

simplify

Boolean

the

Laws

and

Theorems

⚫ Simpler

expressions

lead

to

simpler

circuit

realization,

which, generally, reduces

power

consumption.

⚫ The

objective

of

the

digital

and

realize

optimal

digital

ost,

area

requirements,

and

circuit

designer

is

to

design

ircuits.

 ECE - Digital Electronics 39

 Algebraic Simplification

 ⚫ Justification for simplifying Boolean expressions:

– Reduces the cost associated with realizing the

expression using logic gates.

– Reduces the area (i.e. silicon) required to fabricate the
switching function.

– Reduces the power c onsumption of the circuit.

 ECE - Digital Electronics 40

⚫ In general, there is no easy way to determine when a
Boolean expression has been simplified to a minimum
number of terms or minimum number of literals.

– No unique solution

 Algebraic Simplification

⚫ Boolean (or Switching) expressions can
be simplified using the following methods:

1. Multiplying out th e expression

2. Factoring the exp r ession

 ECE - Digital Electronics 41

3. Combining terms of the expression

4. Eliminating terms in the expression

5. Eliminating literals in the expression

6. Adding redundant terms to the expression

As we shall see, there are other tools that can be used to simplify Boolean

Expressions. Namely, Karnaugh Maps.

Digital Systems:

Combinational

Logic

Circuits

Objectives

⚫ Convert a logic expression into a sum-of-products
expression.

⚫ Perform the necessary steps to reduce a sum-of-

products expression to its simplest form.

⚫ Use Boolean algebra and the Karnaugh map as tools
to simplify and design logic circuits.

⚫ Explain the operation of both exclusive-OR and
exclusive-NOR circuits.

⚫ Design simple logic circuits without the help of a truth

table.

Objectives

(cont’d)

⚫ Implement enable circuits.

⚫ Cite the basic characteristics of TTL and CMOS digital

ICs.

⚫ Use the basic troubleshooting rules of digital systems.

⚫ Deduce from observed results the faults of
malfunctioning combinational logic circuits.

⚫ Describe the fundamental idea of programmable logic
devices (PLDs).

⚫ Outline the steps involved in programming a PLD to

perform a simple combinational logic function

Combinational

Logic Circuits

⚫ The logic level at the output depends on the

combination of logic levels present at the

inputs.

⚫ A combinational circuit has no memory, so its
output depends only on the current value of its
inputs.

⚫ We will not spend a great deal of time discussing
how to troubleshoot the

combinational circuits. (That’s what the lab is

for.)

Sum - of - Products

Form

⚫

Sum

→

OR

⚫

Product

→

AND

⚫

Each of

the

sum - of - products

expression

consists

of

two

or

more

AND

terms

that

are

ORed

together.

⚫

Examples:

ABC+A ’ BC ’

AB+A ’ BC ’ + C ’ D ’ D +

⚫

Note

that

one

inversion

sig n

cannot

cover

more than

one

variable

in

a

term.

AB

is

not

allowed.

Product - of - Sums

Form

⚫

Each

of

the

product - of - sums

expression

consists

of

two

or

more

OR

terms

that

are

ANDed

together.

⚫

Examples:

(A+B ’ + C)(A+C)

(A+B ’)(C ’ + D)F

⚫

Will

use

sum - of - products

form

in

logic circuit

simplification.

Simplifying

Logic

Circuits

⚫

Goal:

reduce

the

logic

circuit

expression

to

a

simpler

form

so

that

fewer

gates

and

connections

are

required

to

build

the

circuit.

⚫

Example:

4.1(a)

and

4.1(b)

are

equivalent,

but

4 - b) 1(

is

much

simpler.

Example

4.1

Circuit

Simplification

Methods

⚫

Boolean

algebra:

greatly

depends

on

inspiration

and

experience.

⚫

Karnaugh

map:

systematic,

step - by - step

approach.

⚫

Pros

and

Cons

Algebraic

Simplification

⚫

Use the Boolean algebra theorems introduced

in Chapter 3 to help simplify the expression for

a

logic

circuit.

⚫

Based

on

experience,

often

becomes

a

trial -

and - error

process.

⚫

No

easy

way

to tell

whether

a

simplified

expression

is

in

its

simplest

form.

Two

Essential

Steps

⚫

The

original

expression

is

put

into

the

sum - of -

products

form

by

repeated

application

of

DeMorgan ’ s

theorem

and

multiplication

of

terms.

⚫

The

product

terms

are

checked

for

common

factors,

and

factoring

is

performed

whenever

possible.

Examples 4-1 to 4-4

Original Simplified

ABC+AB’(A’C’)’ A(B’+C)

ABC+ABC’+AB’C A(B+C)

A’C(A’BD)’+A’BC’D’+AB’C B’C+A’D’(B+C)

(A’+B)(A+B+D)D’ BD’

Examples

4 - 5 ,

4 - 6

⚫

(A ’ + B)(A+B ’):

equivalent

form

A ’ B ’ + AB

⚫

AB ’ C+A ’ BD+C ’ D ’ :

cannot

be simplified

further.

Designing

Combinational

Logic

Circuits

1.

Set

up

the

truth

table.

2.

Write the

AND

term

for

each

case

where

the

output

is

a

1.

3.

Write

the

sum - of - products

expression

for

the

output.

4.

Simplify the

output expression.

5.

Implement

the

circuit for

the

final

expression.

Example

4 - 8

⚫

Design

a

logic

circuit

that

is

to

produce

a

HIGH

output

when

the

voltage

represented (

by

a

four - bit

binary

number

ABCD)

is

greater

than

6 V.

Example

4 - 9

⚫

Generate

the

STOP

signal

and

energize

an

indicator light

whenever

either

of the

following

conditions

exists:

(1)

there

is

no

paper

in

the

paper

feeder

tray; or

(2)

the

two

micro - switches

in

the

paper

path

are

activated,

indicating

a

jam.

Karnaugh

Map

Method

⚫

A

graphical

device

to

simplify

a

logic

expression.

⚫

Will only

work

on

examples

with

up

to

4

input

variables.

⚫

From

truth

table

to

logic

expression

to

K

map.

⚫

Figure

4.11

shows

the

K

map

with

2 , 3

and

4

variables.

Looping

⚫ The expression for output X can be simplified by properly

combining those squares in the K map which contain 1s.

The process of combining these 1s is

called looping.

⚫ Looping groups of two (pairs) → eliminate 1 variable

⚫ Looping groups of four (quads) → eliminate 2 variables

⚫ Looping groups of eight (octets)→ eliminate 3 variables

⚫ See Figure 4-12 to 4-14.

Complete Simplification Process

⚫ Step 1: Construct the K map and places 1s in those
squares corresponding to the 1s in the truth table.
Places 0s in the other squares.

⚫ Step 2: Examine the map for adjacent 1s and loop
those 1s which are not adjacent to any other 1s.
(isolated 1s)

⚫ Step 3: Look for those 1s which are adjacent to only
one other 1. Loop any pair containing such a 1.

⚫ Step 4: Loop any octet even when it contains some 1s
that have already been looped.

Complete

Simplification Process

⚫ Step 5: Loop any quad that contains one or

more 1s that have not already been looped,

making sure to use the minimum number of

loops.

⚫ Step 6: Loop any pairs necessary to include
any 1s have not already been looped, making
sure to use the minimum number of loops.

⚫ Step 7: Form the ORed sum of all the terms

generated by each loop.

Filling K Map

from Output Expression

⚫ What to do when the desired output is

presented as a Boolean expression instead of a

truth table?

⚫ Step 1: Convert the expression into SOP form.

⚫ Step 2: For each product term in the SOP
expression, place a 1 in each K-map square
whose label contains the same combination of
input values. Place a 0 in other squares.

⚫ Example 4-14: y=C’(A’B’D’+D)+AB’C+D’

Don’t-Care Conditions

⚫ Some logic circuits can be designed so that

there are certain input conditions for which

there are no specified output levels.

⚫ A circuit designer is free to make the output for

any don’t care condition either a 0 or a 1 in

order to produce the simplest output

expression.

⚫ Figures 4-18,19.

Example

4 - 17

⚫

Design a logic circuit, using x 1
, x 0

, y 1
 and y

inputs, whose

output

will

be

HIGH

only

when

the

two

binary

numbers

x 1 x 0
 and

y 1 y 0
 are

equal.

⚫

Hint:

use

XNOR

gates

(Figure

4 - 23)

0

Using

XNOR

to

Simplify

Circuit

Implementation

⚫

Example

4 - 18

Parity

Generator

V1

0 V
U1A

V2

0 V

L1

U1C

V3

V 5
U1B

V4

V 5

Error

Even - parity

Checker

V5

0 V

V1

0 V
U1C

V2

0 V

V3

5 V
U1B

V4

5 V

Enable/Disable Circuits

⚫ Each of the basic logic gates can be used to

control the passage of an input logic signal

through to the output.

⚫ A: input, B: control (Figure 4-26)

⚫ The logic level at the control input determines

whether the input signal is enabled to reach the

output or disabled from reaching the output.

Basic

Characteristics

of

Digital

ICs

⚫

Digital

ICs

are

a

collection

of resistors, diodes

and

transistor

fabricated

on

a

single

piece

of

semiconductor

material

called

a

substrate,

which

is

commonly

referred

to

as

a

chip .

⚫

The

chip

is

enclosed

in

a

package.

⚫

Dual - in - line

package

) (DIP

Integrated

Circuits

Complexity Number of Gates

Small-scale integration(SSI) <12

Medium-scale integration(MSI) 12 to 99

Large-scale integration(LSI) 100 to 9999

Very large-scale integration(VLSI) 10,000 to 99,999

Ultra large-scale integration(ULSI) 100,000 to 999,999

Giga-scale integration (GSI) 1,000,000 or more

Bipolar and Unipolar Digital ICs

⚫ Categorized according to the principal type of

electronic component used in their circuitry.

⚫ Bipolar ICs are those that are made using the

bipolar junction transistor (PNP or NPN).

⚫ Unipolar ICs are those that use the unipolar

field-effect transistors (P-channel and N-

channel MOSFETs).

IC

Families

⚫

TTL

Family:

bipolar

digital

ICs (Table

4 - 6)

⚫

CMOS

Family:

unipolar

digital ICs

Table (

4 - 7)

⚫

TTL

and

CMOS

dominate

the

field

of

SSI

and

MSI

devices.

TTL

Family

TTL Series Prefix Example

IC

Standard TTL 74 7404

(hex

inverter)

Schottky TTL 74S 74S04

Low-power

Schottky TTL

74LS 74LS04

Advanced Schottky

TTL

74AS 74AS04

Advanced low- power

Schottky TTL

74ALS 74ALS04

CMOS

Family

CMOS Series Prefix
Example

IC

Metal-gate CMOS 40 4001

Metal-gate, pin-compatible with TTL 74C 74C02

Silicon-gate, pin-compatible with TTL, high-

speed

74HC 74HC02

Silicon-gate, high-speed, pin-

compatible and electrically compatible

with TTL

74HCT 74HCT02

Advanced-performance CMOS, not pin or electrically

compatible with TTL
74AC 74AC02

Advanced-performance CMOS, not pin but

electrically compatible with TTL
74ACT 74ACT02

Power

and

Ground

⚫

To

use

digital

IC,

it

is

necessary

to

make

proper

connection

to

the

IC

pins.

⚫

Power:

labeled

V cc
 for

the

TTL

circuit,

labeled

V DD
 for

CMOS

circuit.

⚫

Ground

Logic - level

Voltage

Ranges

⚫

For

TTL

devices,

V CC
 is

normally

5 V.

⚫

F or

CMO S

c i r c u i t s ,

V D D c an

range

from

3 - 18 V .

⚫

For

TTL,

logic

0

:

0 - 0 ,8V,

logic

1:2 - 5 V

⚫

For

CMOS,

logic

0

:

0 - V, 1.5

logic

1:3.5 - 5 V

Unconnected

Inputs

⚫

Also

called

floating

inputs.

⚫

A

floating

TTL

input

acts

like

a

logic

1 ,

but

measures

a

DC

level

of

between

1.4

and

1.8 V.

⚫

A CMOS

input

cannot

be

left

floating.

Logic - Circuit

Connection

Diagrams

⚫

A connection

diagram

shows

all

electrical

connections,

pin

numbers,

IC

numbers,

component

values,

signal

names,

and

power

supply

voltages.

⚫

See

Figure

4 - 32.

Troubleshooting

Digital

Systems

⚫

Fault

detection

⚫

Fault

isolation

⚫

Fault correction

⚫

Good

troubleshooting

techniques

can

be

learned

only

through

experimentation

and

actual

troubleshooting

of

faulty circuits.

Troubleshooting

Tools

⚫

Logic

probe

⚫

Oscilloscope

⚫

Logic

pulser

⚫

Current

tracer

⚫

…

and

your

BRAIN!

Indicator

Light

Logic

Level

OFF

LOW

ON

HIGH

DIM

INTERMEDIATE

FLASHING

PULSING

Internal IC Faults

⚫ Malfunction is the internal circuitry.

⚫ Inputs or outputs shorted to ground or Vcc

(Figure 4.34, 4-35)

⚫ Inputs or outputs open-circuited (Figure 4.36)

⚫ Short between two pins (other than ground or

Vcc): whenever two signals that are supposed

to be different show the same logic-level

variations.

External

Faults

⚫ Open signal lines:Broken wire, Poor solder connection,

Crack or cut trace on a printed circuit board, Bend or

broken pin on a IC, faulty IC socket.

⚫ Shorted signal lines: sloppy wiring, solder bridges,

incomplete etching.

⚫ Faulty power supply

⚫ Output loading: when an output is connected to too

many IC inputs.

Programmable

Logic

Device

⚫

PLD

is

an

integrated

circuit

that

contains

a

particular

arrangement

of logic

gates. (Figure

4.41)

⚫

Useful

in

implementing

complex

circuits

containing

tens

or

thousands

of

logic

gates.

⚫

Sum - of - products

form

1

Sequential Digital Circuits

• Sequential circuits are digital circuits in which the outputs

depend not only on the current inputs, but also on the previous

state of the output.

• They basic sequential circuit elements can be divided in two

categories:

• Level-sensitive (Latches) – High-level sensitive

– Low-level sensitive

• Edge-triggered (Flip-flops)

– Rising (positive) edge triggered

– Falling (negative) edge triggered

– Dual-edge triggered

 Digital Logic for Computers 2

 Digital Logic for Computers - Frederick

The Set/Reset (SR) Latch

The Set/Reset latch is the most basic unit of sequential digital circuits. It has two

inputs (S and R) and two outputs outputs Q and Q’. The two outputs must always be

complementary, i.e if Q is 0 then Q’ must be 1, and vice-versa. The S input sets the Q

output to a logic 1. The R input resets the Q output to a logic 0.

 Digital Logic 3

The Gated Set/Reset (SR) Latch

 Digital Logic for Computers 4

To be able to control when the S and R inputs of the SR latch can be applied to the latch

and thus change the outputs, an extra input is used. This input is called the Enable. If the

Enable is 0 then the S and R inputs have no effect on the outputs of the SR latch. If the

Enable is 1 then the Gated SR latch behaves as a normal SR latch.

Circuit Diagram

Truth Table

Truth Table

S EN S R Q + EN S R Q + Function

for Computers

S Q Q

EN
0

R Q Q
R

Logic Symbol

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

Q

Q

Q

Q

Q

0 X X

1 0 0

1 0 1

1 1 0

1 1 1

S

EN

R

Q 0

1

Q
U

 Digital Logic 5

 Digital Logic for Computers 6

SR Latch :- Example

Complete the timing diagrams for :

(a) Simple SR Latch

(b) SR Latch with Enable input.

Assume that for both cases the Q output is initially at logic zero.

 Digital Logic for Computers 7

The Data (D) Latch

A problem with the SR latch is that the S and R inputs can not be at logic 1 at the

same time. To ensure that this can not happen, the S and R inputs can by connected

a) (() b

Set Enable

Reset Set

Reset

Q

Q

 Digital Logic for Computers 8

through an inverter. In this case the Q output is always the same as the input, and the

latch is called the Data or D latch. The D latch is used in Registers and memory

devices.

 Circuit Diagram

 Truth Table Truth Table

Logic Symbol

EN D Q Q+

0 0 0 Q

0 0 1 Q

0 1 0 Q

0 1 1
Q

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

EN D Q+ Function

0 0

0 1

1 0

1 1

D
Q

EN

Q Q R

Q S

D Q

EN

Q

 Digital Logic for Computers 9

The JK Latch

Another way to ensure that the S and R inputs can not be at logic 1 simultaneously, is

to cross connect the Q and Q’ outputs with the S and R inputs through AND gates.

The latch obtained is called the JK latch. In the J and K inputs are both 1 then the Q

output will change state (Toggle) for as long as the Enable 1, thus the output will be

unstable. This problem is avoided by ensuring that the Enable is at logic 1 only for a

very short time, using edge detection circuits.

 Digital Logic for Computers 10

Circuit Diagram

Logic Symbol

 Truth Table Truth Table

EN J K Q Q+

0 X X X Q

1 0 0 0 0

1 0 0 1 1

1 0 1 0 0

1 0 1 1 0

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

EN J K Q+ Function

0 X X

1 0 0

1 0 1

1 1 0

1 1 1

J Q

EN

K Q

EN

K

 Digital Logic for Computers 11

Latches and Flip-Flops

• Latches are also called transparent or level triggered flip flops,

because the change on the outputs will follow the changes of the

inputs as long as the Enable input is set.

• Edge triggered flip flops are the flip flops that change there outputs

only at the transition of the Enable input. The enable is called the

Clock input.

Edge Detection Circuits

 Digital Logic for Computers 12

Edge detection circuits are used to detect the transition of the Enable from logic 0 to

logic 1 (positive edge) or from logic 1 to logic 0 (negative edge). The operation of the

edge detection circuits shown below is based on the fact that there is a time delay

between the change of the input of a gate and the change at the output. This delay is

in the order of a few nanoseconds. The Enable in this case is called the Clock (CLK)

 Positive Edge Detection Negative Edge Detection

EN
EN' EN

EN'

EN
EN

EN

EN EN

EN

EN

EN

EN' EN'

 Digital Logic 13

The JK Edge Triggered Flip Flop

The JK edge triggered flip flop can be obtained by inserting an edge detection circuit at

the Enable (CLK) input of a JK latch. This ensures that the outputs of the flip flop will

change only when the CLK changes (0 to 1 for +ve edge or 1 to 0 for –ve edge)

 Digital Logic for Computers 14

The D Edge Triggered Flip Flop

The D edge triggered flip flop can be obtained by connecting the J with the K inputs

of a JK flip through an inverter as shown below. The D edge trigger can also be

obtained by connecting the S with the R inputs of a SR edge triggered flip flop

through an inverter.

 Digital Logic for Computers 16

Positive Edge D Flip Flop

Logic Symbol

CLK D QN+1 Function

X
Q

0
 0

 1
1

Negative Edge D Flip Flop

Logic Symbol CLK D QN+1 Function

X Q

 0 0

 1 1

CLK

 Q

D Q

D

CLK

Q

Q K Q

J Q K Q

J Q D Q

CLK

Q

CLK

D Q

Q

Digital Logic for Computers

10

The Toggle (T) Edge Triggered Flip Flop

The T edge triggered flip flop can be obtained by connecting the J with the K inputs

of a JK flip directly. When T is zero then both J and K are zero and the Q output does

not change. When T is one then both J and K are one and the Q output will change to

the opposite state, or toggle.

 Digital Logic for Computers 18

 Digital Logic for Computers 11

 Digital Logic for Computers 20

Flip Flops with asynchronous inputs (Preset and Clear)

Two extra inputs are often found on flip flops, that either clear or preset the output.

These inputs are effective at any time, thus are called asynchronous. If the Clear is at

logic 0 then the output is forced to 0, irrespective of the other normal inputs. If the

Preset is at logic 0 then the output is forced to 1, irrespective of the other normal

inputs. The preset and the clear inputs can not be 0 simultaneously. In the Preset and

Clear are both 1 then the flip flop behaves according to its normal truth table.

 Digital Logic for Computers 22

 Data (D) Latch :- Example

Complete the timing diagrams for :

(a) D Latch

(b) JK Latch

Assume that for both cases the Q output is initially at logic zero.

 Digital Logic for Computers 23

 JK Edge Triggered Flip Flop :- Example

Complete the timing diagrams for :

(a) Positive Edge Triggered JK Flip Flop

(b) Negative Edge Triggered JK Flip Flop

Assume that for both cases the Q output is initially at logic zero.

 Digital Logic for Computers 24

D and T Edge Triggered Flip Flops :- Example

Complete the timing diagrams for :

(a) Positive Edge Triggered D Flip Flop

(b) Positive Edge Triggered T Flip Flop

(c) Negative Edge Triggered T Flip Flop

 Digital Logic for Computers 25

(d) Negative Edge Triggered D Flip Flop

 Digital Logic for Computers 26

JK Flip Flop With Preset and Clear:- Example

Complete the timing diagrams for :

(a) Positive Edge Triggered JK Flip Flop

(b) Negative Edge Triggered JK Flip Flop.

Assume that for both cases the Q output is initially at logic zero.

 Digital Logic for Computers 27

 Digital Logic for Computers 28

Level Triggered Master Slave JK Flip Flop

 Digital Logic for Computers 29

 Digital Logic for Computers 30

Edge Triggered Master Slave JK Flip Flop

 Digital Logic for Computers 31

Sequential circuit example 1

 Digital Logic for Computers 32

CLR Q

Q
SET D

2 - to - 1
MUX

A0

A1

S

Clock

A0

A1

S

D

Q

Clock

10 9 8 7 6 5 4 3 2 1

 Digital Logic for Computers 33

Sequential circuit example 2

 Digital Logic for Computers 34

Sequential circuit example 3

 Digital Logic for Computers 35

 Digital Logic for Computers 36

S

 Digital Logic for Computers 37

C

Digital Logic for Computers

	POSITIONAL NOTATION
	1.1-1 Conversion of Base

	BINARY ARITHMETIC
	1.2-1 Binary Addition
	1.2-3 Complements
	and the diminished radix complement is defined as
	1.2-4 Shifting
	1.2-5 Binary Multiplication
	1.2-6 Binary Division

	BINARY CODES
	1.3-1 Binary-Coded-Decimal Numbers

	GEOMETRIC REPRESENTATION OF BINARY NUMBERS
	1.4-1 Distance
	1.4-2 Unit-distance Codes
	1.4-3 Symmetries of the n-Cube

	ERROR-DETECTING AND ERROR-CORRECTING CODES
	1.5-1 Single-Error-Correcting Codes
	1.5-2 Double-Error-Detecting Codes
	REFERENCES
	PROBLEMS

	CHAPTER 2 PREVIEW
	COUNTING IN
	PLACE VALUE
	BINARY TO DECIMAL CONVERSION
	CONVERSION
	Decimal 17 = 10001 ELECTRONIC TRANSLATORS
	ELECTRONIC DECODING: BINARY TO DECIMAL
	HEXADECIMAL NUMBER SYSTEM
	DECIMAL TO HEXADECIMAL CONVERSION
	HEXADECIMAL TO DECIMAL CONVERSION
	OCTAL NUMBERS
	PRACTICAL SUGGESTION ON NUMBER SYSTEM CONVERSIONS
	Truth T ables
	Boolean Algebra
	Complete Simplification Process
	Don’t-Care Conditions
	Enable/Disable Circuits
	Bipolar and Unipolar Digital ICs
	⚫ Unipolar ICs are those that use the unipolar field-effect transistors (P-channel and N- channel MOSFETs).

	Internal IC Faults
	The Set/Reset (SR) Latch
	The Gated Set/Reset (SR) Latch
	SR Latch :- Example
	The Data (D) Latch
	The JK Latch
	Latches and Flip-Flops
	Edge Detection Circuits
	The JK Edge Triggered Flip Flop
	The JK edge triggered flip flop can be obtained by inserting an edge detection circuit at the Enable (CLK) input of a JK latch. This ensures that the outputs of the flip flop will change only when the CLK changes (0 to 1 for +ve edge or 1 to 0 for –ve...

	The D Edge Triggered Flip Flop
	The Toggle (T) Edge Triggered Flip Flop
	Flip Flops with asynchronous inputs (Preset and Clear)
	Data (D) Latch :- Example
	JK Edge Triggered Flip Flop :- Example
	D and T Edge Triggered Flip Flops :- Example
	JK Flip Flop With Preset and Clear:- Example
	Level Triggered Master Slave JK Flip Flop
	Edge Triggered Master Slave JK Flip Flop

	Sequential circuit example 1
	Sequential circuit example 2

